• Title/Summary/Keyword: 오차평가기법

Search Result 656, Processing Time 0.032 seconds

A Study on the Accuracy of Scan by the Standard Model Deformation Depending on the Hand Scanning Method (핸드스캐닝 작업 방법에 따라 표준 모델 변형이 작업 정밀도에 미치는 정밀스캔에 관한 연구)

  • Shin, Seong-Hun;Jang, Seong-Ho;Song, Joon-Ki;Park, Kwang-Sig;Lee, Hee-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.197-202
    • /
    • 2018
  • This study was conducted to evaluate the distortion and data accuracy that may occur depending on the methods employed by the oral scanner (intra-oral scanner). Deseutap 3D models employing a plaster model used clinically as a scanner to create a standard scan data using the same model, separated by oral scanners in three different ways (AS Group, ZS group, OS group) How to scan each 5 times made the scan data for each group, it shows the 0.121 mm, 0.172 mm AS group, OS group 0.423 mm accuracy in ZS group. The ZS group showed the highest accuracy, with maximum error values of 0.113 mm, 0.169 mm and 0.246 being observed for the ZS, AS and OS group, respectively. The three scanning methods showed a clear differences in accuracy and reproducibility and also appeared to be meaningful in clinical practice.

Flood Inflow Estimation at Large Multipurpose Dam using Distributed Model with Measured Flow Boundary Condition at Direct Upstream Channels (직상류 계측유량경계조건과 분포형모델을 이용한 대규모 다목적댐 홍수유입량 산정)

  • Hong, Sug-Hyeon;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1039-1049
    • /
    • 2015
  • The inflow estimation at large multipurpose dam reservoir is carried out by considering the water balance among the discharge, the storage change during unit time interval obtained from the observed water level near dam structure and area-volume curve. This method can be ideal for level pool reservoir but include potential errors when the inflow is influenced by the water level slope due to backwater effects from upstream flood inflows and strong wind induced by typhoon. In addition, the other uncertainties arisen from the storage reduction due to sedimentation after the dam construction and water level noise due to mechanical vibration transmitted from the electric power generator. These uncertainties impedes the accurate hydraulic inflow measurement requiring exquisite hydrometric data arrangement for reservoir waterbody. In this study, the distributed hydrologic model using UBC-3P boundary setting was applied and its feasibility was evaluated. Finally, the modeling performance has been verified since the calculated determination coefficient has been in between 0.96 to 0.99 after comparing with observed peak inflow and total inflow at Namgang dam reservoir.

Nonnegative Matrix Factorization Based Direction-of-Arrival Estimation of Multiple Sound Sources Using Dual Microphone Array (이중 마이크로폰을 이용한 비음수 행렬분해 기반 다중음원 도래각 예측)

  • Jeon, Kwang Myung;Kim, Hong Kook;Yu, Seung Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • This paper proposes a new nonnegative matrix factorization (NMF) based direction-of-arrival (DOA) estimation method for multiple sound sources using a dual microphone array. First of all, sound signals coming from the dual microphone array are segmented into consecutive analysis frames, and a steered-response power phase transform (SRP-PHAT) beamformer is applied to each frame so that stereo signals of each frame are represented in a time-direction domain. The time-direction outputs of SRP-PHAT are stored for a pre-defined number of frames, which is referred to as a time-direction block. Next, In order to estimate DOAs robust to noise, each time-direction block is normalized along the time by using a block subtraction technique. After that, an unsupervised NMF method is applied to the normalized time-direction block in order to cluster the directions of each sound source in a multiple sound source environments. In particular, the activation and basis matrices are used to estimate the number of sound sources and their DOAs, respectively. The DOA estimation performance of the proposed method is evaluated by measuring a mean absolute error (MAE) and the standard deviation of errors between the oracle and estimated DOAs under a three source condition, where the sources are located in [$-35{\circ}$, 5m], [$12{\circ}$, 4m], and [$38{\circ}$, 4.m] from the dual microphone array. It is shown from the experiment that the proposed method could relatively reduce MAE by 56.83%, compared to a conventional SRP-PHAT based DOA estimation method.

Estimation of soil moisture based on sentinel-1 SAR data: focusing on cropland and grassland area (Sentienl-1 SAR 토양수분 산정 연구: 농지와 초지지역을 중심으로)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.973-983
    • /
    • 2020
  • Recently, SAR (Synthetic Aperture Radar) is being highlighted as a solution to the coarse spatial resolution of remote sensing data in water resources research field. Spatial resolution up to 10 m of SAR backscattering coefficient has facilitated more elaborate analyses of the spatial distribution of soil moisture, compared to existing satellite-based coarse resolution (>10 km) soil moisture data. It is essential, however, to multilaterally analyze how various hydrological and environmental factors affect the backscattering coefficient, to utilize the data. In this study, soil moisture estimated by WCM (Water Cloud Model) and linear regression is compared with in-situ soil moisture data at 5 soil moisture observatories in the Korean peninsula. WCM shows suitable estimates for observing instant changes in soil moisture. However, it needs to be adjusted in terms of errors. Soil moisture estimated from linear regression shows a stable error range, but it cannot capture instant changes. The result also shows that the effect of soil moisture on backscattering coefficients differs greatly by land cover, distribution of vegetation, and water content of vegetation, hence that there're still limitations to apply preexisting models directly. Therefore, it is crucial to analyze variable effects from different environments and establish suitable soil moisture model, to apply SAR to water resources fields in Korea.

AMSEA: Advanced Multi-level Successive Elimination Algorithms for Motion Estimation (움직임 추정을 위한 개선된 다단계 연속 제거 알고리즘)

  • Jung, Soo-Mok;Park, Myong-Soon
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.98-113
    • /
    • 2002
  • In this paper, we present advanced algorithms to reduce the computations of block matching algorithms for motion estimation in video coding. Advanced multi-level successive elimination algorithms(AMSEA) are based on the Multi-level successive elimination algorithm(MSEA)[1]. The first algorithm is that when we calculate the sum of absolute difference (SAD) between the sum norms of sub-blocks in MSEA, we use the partial distortion elimination technique. By using the first algorithm, we can reduce the computations of MSEA further. In the second algorithm, we calculate SAD adaptively from large value to small value according to the absolute difference values between pixels of blocks. By using the second algorithm, the partial distortion elimination in SAD calculation can occur early. So, the computations of MSEA can be reduced. In the third algorithm, we can estimate the elimination level of MSEA. Accordingly, the computations of the MSEA related to the level lower than the estimated level can be reduced. The fourth algorithm is a very fast block matching algorithm with nearly 100% motion estimation accuracy. Experimental results show that AMSEA are very efficient algorithms for the estimation of motion vectors.

Calibration of cultivar parameters for cv. Shindongjin for a rice growth model using the observation data in a low quality (저품질 관측자료를 사용한 벼 생육 모델의 신동진 품종모수 추정)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.42-54
    • /
    • 2019
  • Crop models depend on a large number of input parameters including the cultivar parameters that represent the genetic characteristics of a given cultivar. The cultivar parameters have been estimated using high quality data for crop growth, which require considerable costs and efforts. The objective of this study was to examine the feasibility of using low quality data for the parameter estimation. In the present study, the cultivar parameters for cv. Shindongjin were estimated using the data obtained from the report of new cultivars development and research from 2005 to 2016. The root mean square errors (RMSE) of the heading dates were less than 3 days when the parameters associated with phenology were estimated. In contrast, the coefficient of determination for yield tended to be less than 0.1. The large errors incurred by the fact that no growth data collected over a season was used for parameter estimation. This suggests that detailed observation data needs to be prepared for parameter calibration, which would be aided by remote sensing approaches. The occurrence of natural disasters during a growing season has to be considered because crop models cannot take into account the effects of those events. Still, our results provide a reasonable range for the parameters, which could be used to set the boundary of a given parameter for cultivars similar to cv. Shindongjin in further studies.

Study on Optimum Mixture Design for Service Life of RC Structure subjected to Chloride Attack - Genetic Algorithm Application (염해에 노출된 콘크리트의 내구수명 확보를 위한 최적 배합 도출에 대한 연구 - 유전자 알고리즘의 적용)

  • Kwon, Seung-Jun;Lee, Sung Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.433-442
    • /
    • 2010
  • A control of chloride diffusion coefficient is very essential for service life of reinforced concrete (RC) structures exposed to chloride attack so that much studies have been focused on this work. The purpose of this study is to derive the intended diffusion coefficient which satisfies intended service life and propose a technique for optimum concrete mixture through genetic algorithm(GA). For this study, 30 data with mixture proportions and related diffusion coefficients are analyzed. Utilizing 27 data, fitness function for diffusion coefficient is obtained with variables of water to binder ratio(W/B), weight of cement, mineral admixture(slag, flay ash, and silica fume), sand, and coarse aggregate. 3 data are used for verification of the results from GA. Average error from fitness function is observed to 18.7% for 27 data for diffusion coefficient with 16.0% of coefficient of variance. For the verification using 3 data, a range of error for mixture proportions through GA is evaluated to 0.3~9.3% in 3 given diffusion coefficients. Assuming the durability design parameters like intended service life, cover depth, surface chloride content, and replacement ratio of mineral admixture, target diffusion coefficient, where exterior conditions like relative humidity(R.H.) and temperature, is derived and optimum design mixtures for concrete are proposed. In this paper, applicability of GA is attempted for durability mixture design and the proposed technique would be improved with enhancement of comprehensive data set including wider range of diffusion coefficients.

Accuracy Analysis of Network RTK Surveying for Cadastral Re-survey Project (지적재조사사업에서 Network RTK 측량의 적용 정확도 분석)

  • Park, Chun Soo;Park, Ki Heon;Hong, Sung Eon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.117-123
    • /
    • 2013
  • The purpose of this research is to suggest the reasonable method of Network RTK surveying in future cadastral re-survey project through the accuracy analysis about Network RTK surveying achievement and the conventional TS-based confirmation surveying. To achieve it, we selected the experiment places and succeeded in achieving the result by Network RTK surveying about total of 307 parcel boundary point. We compared it with the result of confirmation surveying for cadastral, and it was shown that total connection errors of RMSE was ${\pm}0.1028m$ and total 48 places exceeded in the cadastral re-survey allowable error tolerance. The research suggested the practical alternatives in cadastral re-survey project after the comprehensive evaluation of those analysis results. Therefore, the author suggested development and adoptation of integrated electronic plane table surveying method. Moreover, we suggested unifying the first parcel boundary point method into the total station surveying and adopt the Network RTK surveying on the cadastral surveying inspection.

Soil Deformation Tracking in Model Chamber by Targetless Close-Range Photogrammetry (무타겟 사진측량 기반 모형 토조 내 지반 변위 측정)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.555-562
    • /
    • 2019
  • This paper presents soil deformation measurement in model chamber based on photogrammetry. We created an aluminum framed acrylic model chamber with soil inside and applied photogrammetry to measure soil deformation caused by loading tests. The soil consists of 40% black and 60% regular sand to create image contrast in soil images. In preprocessing, the self camera calibration was carried out for IOPs (Interior Orientation Parameters), followed by the space resection to estimate EOPs (Exterior Orientation Parameters) using control points located along the aluminum frame. Image matching was applied to measure the soil displacement. We tested different matching window sizes and the effect of image smoothing. Experimental results showed that 65x65 pixels of window size produced better soil deformation map and the image smoothing was useful to suppress the matching outliers. In conclusion, photogrammetry was able to efficiently generated soil deformation map.

Far Feild test on Electromagnetic Wave Absorber in Paint Type for X-babd Radar (X-Band Radar용 도료형 전파흡수체의 실장실험)

  • 안영섭;김동일;정세모
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.3-10
    • /
    • 1993
  • As a method to measure the absorbing characteristics of microwave absorber, various microwave measuring method can be used fundamentally. There is, however, a big problem in measuring errors, since the wavelength of microwave such as used for radar is very short. Therefor, this research aimed to design and fabricate a converting adaptor of 20mm .PHI. coaxial tube from a type-N connector to coaxial tube and to use it for evaluating absorption characteristics of microwave absorbor. Furthemore, the measurements of absorbing characteristics and material constants have been perfomed and reviewed, which were carried out by using the coaxial and by using rectangular waveguide, respectively. As a result, the validity of the proposed measuring method has been conformed. In this paper, a preliminary evalua- tion on the characteristics of the electromagnetic wave absorbor for X-band radar designed and fabricated for a laboratory use is performed by reflected power method near to a pratical use. Then for field test by using X-band radar is carried out with real target of $1.2m\times1.2m$ in size. As the result of the above, the usefullness of the designed and fabricated electromagnetic wave absorber in paint type for X-band radar has been confirmed.

  • PDF