The purpose of this study is to collect biosignal data in a non-invasive and non-restrictive manner using a BCG (Ballistocardiogram) sensor, and utilize artificial intelligence machine learning algorithms in ICT and high-performance computing environments. And it is to present and study a method for developing and validating a data-based blood glucose prediction model. In the blood glucose level prediction model, the input nodes in the MLP architecture are data of heart rate, respiration rate, stroke volume, heart rate variability, SDNN, RMSSD, PNN50, age, and gender, and the hidden layer 7 were used. As a result of the experiment, the average MSE, MAE, and RMSE values of the learning data tested 5 times were 0.5226, 0.6328, and 0.7692, respectively, and the average values of the validation data were 0.5408, 0.6776, and 0.7968, respectively, and the coefficient of determination (R2) was 0.9997. If research to standardize a model for predicting blood sugar levels based on data and to verify data set collection and prediction accuracy continues, it is expected that it can be used for non-invasive blood sugar level management.
Journal of Korean Society of Industrial and Systems Engineering
/
v.20
no.44
/
pp.357-368
/
1997
본 연구에서는 의학분야의 생존분석에서 적용되어 왔던 Cox의 비례위험모형을 신뢰성예측 에 적용할 때의 분석절차 및 그에 따른 소프트웨어를 다룬다. 이 비례 위험모형은 신뢰성공학 분야에 적용될 경우 많은 잠재력을 가지고 있으나, 그 분야에 적용된 경우가 많지 않고, 이미 적용된 사례들도 잘못 적용되어 왔다는 지적이 많은 실정이다. 본 연구에서는 시스템 , 서브시스템, 부품수준에서의 각 라이프사이클을 거치며 얻어진 수명데이타를 분석하여 신뢰도를 예측할 수 있는 모형을 설정하고, 그에 따른 소프트웨어를 다루며, 이 방법의 개관, 장단점, 주의점등을 고찰한다.
Proceedings of the Korea Society for Simulation Conference
/
2002.11a
/
pp.65-69
/
2002
위성의 운용 중 발생할 수 있는 Contingency에 대한 분석과 이의 해결을 위한 운용자의 대응 과정은 매운 중요하다. 현재 한국전자통신연구원에서는 2004년 5월 발사 예정인 다목적 실용위성 2호 관제시스템을 개발 중에 있으며 위성 시뮬레이터는 관제 시스템을 구성하는 하나의 서브시스템이다 개발 중인 위성 시뮬레이터는 순수 소프트웨어 시뮬레이터이며 위성의 하드웨어 서브시스템, 위성의 비행 소프트웨어, 위성 비행역학을 높은 정밀도를 갖는 모델로 구성하여 원격측정과 원격명령의 처리, 위성시스템, 기능검증, 위성 비행운동 예측과 분석, 위성 운용자 교육 등의 기능을 수행 할 수 있도록 설계되었다. 본 논문은 위성 운용 중 발생 예측되는 Contingency 상황을 설정하여 시뮬레이션 할 수 있는 다목적 실용위성 2호 관제시스템의 위성 시뮬레이터 기능과 그 이용 방법을 설명하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.424-426
/
2005
다양하고 복잡해지는 소프트웨어 프로젝트를 효율적으로 수행하기 위한 방법론들 중에서 프로세스 평가와 개선에 대한 관심이 높아지고 있다. 그러나 소프트웨어 프로세스 개선을 위한 방법론들은 조직이 비즈니스 목표인 정량적인 품질 관리에 도달하게 하기 위한 측정과 분석활동에 대한 구체적인 가이드라인을 제시하지 않는다. 본 연구는 효과적인 정량적인 프로세스 및 프로젝트 관리를 위해 Six Sigma 방법론을 도입, CMM 레벨 2의 예측공수모델에 적용하여 제시, 프로세스 측정과 분석활동의 개선 가능성에 대해 모색하고자 한다.
오픈 소스 소프트웨어에 대한 관심과 함께 많은 연구가 진행 중이며, 오픈 소스 소프트웨어 개발을 지원하는 커뮤니티도 다수 존재하고 있다. 오픈 소스를 활용한 개발비용을 예측을 위해선 오픈 소스의 개발 기간을 예측하여야 하지만, OSS 개발 방법에는 개발 기간을 산정하는 것이 미비하다. 그리하여 본 연구에서는 OSS 커뮤니티에서 개발기간을 산정하는 것에 대하여 XP 개발 방법의 사용자 스토리 카드를 이용한 산정법을 적용하여 활용하는 연구를 하고자 한다. 이를 위해, XP의 산정법을 OSS 커뮤니티에 적합하게 수정하였다. 또한 제안한 방법을 실제 SourceForge.net의 프로젝트 중 버그와 추가사항의 기록이 많은 프로젝트에 적용하여 그 가능성을 입증하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.345-348
/
2022
본 논문에서는 유체 시뮬레이션(Fluid simulation)중 화염에서 표현되는 불똥 입자(Fire-flake particle)의 생성, 움직임과 삭제를 효율적으로 학습하고 표현할 수 있는 인공지능 기법에 대해 소개한다. 유체 시뮬레이션을 계산하기 위해서는 일반적으로 수치해석학과 같은 학문의 이해가 필요하며 불똥이나 거품과 같은 유체의 2차 효과(Secondary effect)는 기반유체(Underlying fluids)를 통해 추출되기 때문에 복잡하고 계산양이 많아진다. 이러한 문제를 완화하고자 본 논문에서는 인공신경망을 이용한 분류 모델 학습을 통해 격자 내에서 표현되어야 하는 불똥 입자의 생성을 학습하고, 다항 회귀 모델 학습을 통해 불똥 입자의 움직임을 예측한다. 또한, 불똥 입자가 삭제되어야하는 상태를 네트워크 학습을 통해 얻어내며, 수명(Lifespan) 임계값 조절하여 다양한 장면에서 불똥을 제어할 수 있다. 결과적으로 화염의 움직임을 기반으로 불똥의 움직임을 복잡한 수학식이나 디자이너에게 의존하지 않고 인공지능 학습을 통해 쉽게 제어하고 예측하는 결과를 보여준다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.673-674
/
2022
살아있는 유기체에 의해 분비되는 독소는 대부분의 경우 인간에게 유해하다. 가령 여름철 날것이나 오래된 음식에서 쉽게 식중독에 걸릴 수 있는데, 이는 주로 Clorustidium Botulinum이 만들어낸 보툴리눔 독소가 원인이다. 유기체에 의해 생성된 모든 독소는 단백질이며 이는 아미노산 서열로 나타낼 수 있다. 이를 통해 생물정보학 분야의 많은 연구자들이 많은 머신러닝 기술을 통해 단백질의 독성을 예측할 수 있었다. 최근 몇 년 동안 SVM를 사용하는 BTXpred와 CNN을 사용하는 ToxDL과 같은 모델이 각각 박테리아와 동물 독소의 독성을 예측하기 위해 제안되었다. 시대가 변함에 따라 BERT와 같은 성능이 더욱 뛰어난 모델이 시퀀스 분류를 위해 도입되었다. 본 논문은 독성 단백질을 분류를 위해 ProtBERT를 사용할 경우 이의 성능을 보여주고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.530-531
/
2023
딥러닝에서 지식 증류 기법은 큰 모델의 지식을 작은 모델로 전달하여 작은 모델의 성능을 개선하는 방식이다. 지식 증류 기법은 모델 경량화, 학습 속도 향상, 학습 정확도 향상 등에 활용될 수 있는데, 교사 모델이라 불리는 큰 모델은 일반적으로 학습된 딥러닝 모델을 사용한다. 본 연구에서는 학습된 딥러닝 모델 대신에 수치 기반 시뮬레이션 모델을 사용함으로써 어떠한 효과가 있는지 검증하였으며, 수치 모델을 활용한 기상 예측 모델에서의 지식 증류는 기존 단독 딥러닝 모델 학습 대비 더 작은 학습 횟수(epoch)에서도 동일한 에러 수준(RMSE)까지 도달하여, 학습 속도 측면에서 이득이 있음을 확인하였다.
Hyeong-Jun Jang;Tae-Ho Kim;Hyun-Young Lee;Ji-Hui Im;Sang-Wook Kim
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.466-467
/
2023
다중 목표 대화형 추천 시스템에서 대화의 흐름을 관리하기 위해 사용되는 목표설정을 한다. 본 논문에서는 목표 예측을 위해 기존에 사용되던 입력 프롬프트를 더욱 정교한 형태로 만들어보는 것이 목표 예측 정확도 향상과 더 나아가 응답 생성에도 도움이 되는지 사전 실험을 통해 당위성을 보여준다
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.489-490
/
2023
기계 학습에서 데이터 및 기능은 기계 학습의 상한을 결정한다.이러한 기능은 산업 생산에서 과도한 데이터 양과 유형으로 인해 상당한 추가 비용이 발생할 수 있다. 따라서 적절한 특징 처리 방법이 매우 중요해졌다. 대부분의 기존 특징 처리 방법은 특징 엔지니어링을 기능 검색 문제, 즉 모델 성능을 최적화할 수 있는 기능 변환 작업을 검색하는 것으로 추상화한다. 그러나 자동 특징 엔지니어링의 경우 검색량과 변환 조합의 수가 매우 많기 때문에 요인 분해 기반 모델을 사용하여 벡터 곱셈을 통해 상호 작용을 측정하면 조합 특징의 패턴을 자동으로 학습하는 방법이 특히 효율적이다. xDeepFM 은 명확한 방식으로 특징적인 상호작용을 생성하도록 설계된 새로운 Compressed Interaction Network (CIN)를 제안한다. 여기에 제시된 Low-rank Compressed Interaction Network(LRCIN )은 xDeepFM 접근 방식에서 CIN 네트워크의 단순화된 개선을 기반으로 하며 xDeepFM 에 주의 메커니즘을 추가하여 보다 정확하게 예측된다. 실험 결과에 따르면 모델은 계산 복잡성을 단순화할 뿐만 아니라 예측 정확도도 다른 모델보다 훨씬 우수한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.