It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.
Journal of the Korea Society of Computer and Information
/
v.25
no.12
/
pp.165-172
/
2020
Recently, due to exponential growth of access information on the web, the importance of predicting a user's next web page use has been increasing. One of the methods that can be used for predicting user's next web page is deep learning. To predict next web page, web logs are analyzed by data preprocessing and then a user's next web page is predicted on the output of the analyzed web logs using a deep learning algorithm. In this paper, we propose a framework for web page prediction that includes methods for web log preprocessing followed by deep learning techniques for web prediction. To increase the speed of preprocessing of large web log, a Hadoop based MapReduce programming model is used. In addition, we present a web prediction system that uses an efficient deep learning technique on the output of web log preprocessing for training and prediction. Through experiment, we show the performance improvement of our proposed method over traditional methods. We also show the accuracy of our prediction.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.317-317
/
2021
효율적인 물관리를 위한 댐 유입량 대한 연구는 필수적이다. 본 연구에서는 다양한 머신러닝 알고리즘을 통해 40년동안의 기상 및 댐 유입량 데이터를 이용하여 소양강댐 유입량을 예측하였으며, 그 중 고유량과 저유량예측에 적합한 알고리즘을 각각 선정하여 머신러닝 알고리즘을 결합한 CombML을 개발하였다. 의사 결정 트리 (DT), 멀티 레이어 퍼셉트론 (MLP), 랜덤 포레스트(RF), 그래디언트 부스팅 (GB), RNN-LSTM 및 CNN-LSTM 알고리즘이 사용되었으며, 그 중 가장 정확도가 높은 모형과 고유량이 아닌 경우에서 특별히 예측 정확도가 높은 모형을 결합하여 결합 머신러닝 알고리즘 (CombML)을 개발 및 평가하였다. 사용된 알고리즘 중 MLP가 NSE 0.812, RMSE 77.218 m3/s, MAE 29.034 m3/s, R 0.924, R2 0.817로 댐 유입량 예측에서 최상의 결과를 보여주었으며, 댐 유입량이 100 m3/s 이하인 경우 앙상블 모델 (RF, GB) 이 댐 유입 예측에서 MLP보다 더 나은 성능을 보였다. 따라서, 유입량이 100 m3/s 이상 시의 평균 일일 강수량인 16 mm를 기준으로 강수가 16mm 이하인 경우 앙상블 방법 (RF 및 GB)을 사용하고 강수가 16 mm 이상인 경우 MLP를 사용하여 댐 유입을 예측하기 위해 두 가지 복합 머신러닝(CombML) 모델 (RF_MLP 및 GB_MLP)을 개발하였다. 그 결과 RF_MLP에서 NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, R2 0.859, GB_MLP의 경우 NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, R2 0.831로 CombML이 댐 유입을 가장 정확하게 예측하는 것으로 평가되었다. 본 연구를 통해 하천 유황을 고려한 여러 머신러닝 알고리즘의 결합을 통한 유입량 예측 결과, 알고리즘 결합 시 예측 모형의 정확도가 개선되는 것이 확인되었으며, 이는 추후 효율적인 물관리에 이용될 수 있을 것으로 판단된다.
Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.
Journal of the Korean Society of Propulsion Engineers
/
v.16
no.6
/
pp.16-22
/
2012
Performance of a liquid rocket thrust chamber with regenerative cooling scheme has been numerically analyzed using in-house CFD code which can predict combustion/cooling performance and provide nozzle design parameters. This paper investigates trade-offs between combustion and cooling performance with varying amount of fuel directly injected into the chamber wall to form cooling films and mixture ratios for the peripheral injectors. Further efforts to verify/improve the simulation methodology including comparison with the firing test results are planned to make it a reliable tool to optimize the film cooling and other major design parameters.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2012.05a
/
pp.35-41
/
2012
Performance of a liquid rocket thrust chamber with regenerative cooling scheme has been numerically analyzed using in-house CFD code which can predict combustion/cooling performance and provide nozzle design parameters. This paper investigates trade-offs between combustion and cooling performance with varying amount of fuel directly injected into the chamber wall to form cooling films. Also is analyzed the effect of varying mixture ratios for the peripheral injectors on combustion performance enhancement. Further efforts to verify/improve the simulation methodology including comparison with the firing test results are planned to make it a reliable tool to optimize the film cooling and other major design parameters.
탄소함유 에너지원의 고갈과 가격상승, 이들 에너지 사용에 수반되는 지구 온난화 문제들로 세계는 새로운 에너지원을 도입하고자 노력하고 있다. 그 중 풍력에너지는 자원이 풍부하고 끊임없이 재생되며 광범위한 지역에 분포되어 있고, 운전 중에 온실가스의 배출이 없다는 점에서 가장 경제성이 있고 유용한 에너지원으로 인식되고 있다. 풍력발전기는 선진 국가에서부터 꾸준히 성장해 왔으며, 그 성능을 개선시키기 위하여 많은 연구가 진행되고 있다. 풍력발전기를 설치하여 발전단지를 조성함에 있어서 발전량을 예측하기 위해서 발전기가 세워질 모든 지점에 허브높이의 실측타워를 세워 풍황데이터를 측정하여야 하지만 이런 방법은 재정적인 부담이 매우 크다. 따라서 본 논문에서는 서산기상대에서 측정된 기상데이터를 이용하여 태안해안국립공원내 만리포해수욕장 지역의 풍황 및 발전량을 예측하였다. 이 때 풍황 및 발전량 예측은 풍력단지 설계를 목적으로 사용되고 있는 WindPRO Basic과 WAsP-Interface 모듈을 이용하였다. 이렇게 예측된 풍황을 이용하여 발전단지를 조성하고, PARK 모듈을 사용하여 발전단지의 에너지를 계산하였으며, WindBANK 모듈을 이용하여 단지의 경제성을 평가하였다.
사출성형품의 설계는 그 내부의 기계적 물성 변화보다는 전통적으로 용도에 부합하 는 형상을 위주로 하여 이루어져 왔기 때문에 설계조건의 개선을 통하여 성능이 우수한 제 품을 얻기까지 많은 시행착오가 요구되고 있다. 그런데 사출성형 실험이나 물성평가 시험을 하기 전에 성형품의 부위별 기계적 물성을 알수있다면 제품의 설계나 금형 설계에 많은 도 움이 될 수 있으므로 최근에 물성 예측을 위한 방법론들의 개발이 다양하게 시도되고 있다. 따라서 본 연구에서는 학습시스템, 사출성형 수치모사와 기계적 물성과의 상관관계를 밝히 는 방법을 만들어 사출물이 제작되기 전에 그들의 기계적 물성을 사출성형 수치모사에서 얻 어진 열적·기계적 이력으로부터 예측하고자 하였다. 이때 성형품의 기계적 물성과 열적· 기계적 이력 사이에는 매우 복잡하고 비선형적인 상관관계를 보이기 때문에 이들 사이를 비 매개변수적으로 연관짓기 위하여 역전파 인공신경망 알고리듬을 사용하였으며 열적·기계적 이력은 사출성형용 수치모사 소프트웨어를 이용하여 구하였다. 학습과정에서 전역최소값에 도달하지 못하는 인공신경망의 문제점을 해결하기 위하여 모멘텀변수와 잡음지수를 포함하 는 일련의 항을 첨가하여 연결가중치를 보정하였다. 그 결과 어떤 초기값에 의하여 학습이 되더라도 전역최소값에 도달하는 것을 확인하였으며 이를 이용하여 다른 사출조건에서 사출 물의 기계적 물성을 잘 예측할수 있었다.
본 논문에서는 가장 최근의 동영상 표준인 H.264에서 가변 블록 움직임 예측 시 인접한 블록과의 상관성을 분석하여 병합 절차를 추가함으로써 매크로블록의 최종 모드를 결정하는 시간을 줄이기 위한 알고리즘을 제안한다. H.264에서는 매크로블록의 모드를 결정하기 위하여 총 7가지 모드를 사용하여 움직임 예측은 실시함으로써 부호화 효율을 극대화시킨 반면 이러한 움직임 예측이 부호화기의 복잡도를 높이는 주요 요인으로 현재 커다란 단점으로 지적되고 있다. 본 논문에서는 $8{\times}8$ 움직임 예측이 끝난 후 인접한 두 블록 사이의 거리론 임계값(Threshold)과 비교하여 다음 모드의 움직임 예측의 실시 여부를 먼저 절정함으로써 필요한 움직임 예측에 소비되는 시간을 단축시켰다. 여기서 실험 조건으로 명시하고 있는 것은 대표적인 단일모드 중에서 수행 성능이 가장 좋은 $8{\times}8$ 모드를 기본모드로 사용하고 병합 시 $16{\times}16$ 모드 쪽으로 상향식(bottom-up) 방법의 병합을 수행해 나아간다 모의실험을 통해 수행 성능과 전체 부호화 시간 측면을 본 논문에서 제안한 방법과 4가지 모드인 $16{\times}16,\;16{\times}8,\;8{\times}16,\;8{\times}8$ 모드를 모두 사용한 경우, $8{\times}8$ 단일모드를 사용한 경우를 비교하였다. 실험 결과 $8{\times}8$ 단일모드보다 수행 성능이 향상되었으며, 시간 단축 면에서 제안한 방법이 4가지 모드인 $16{\times}16,\;16{\times}8,\;8{\times}16,\;8{\times}8$ 모드를 모두 사용한 경우와 $8{\times}8$ 단일모드를 사용한 경우보다 계산 시간이 감소하였음을 확인하였다.행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되었다. 답이 없는 문제, 문제 만들기, 일반화가 가능한 문제 등으로 보고, 수학적 창의성 중 특히 확산적 사고에 초점을 맞추어 개방형 문제가 확산적 사고의 요소인 유창성, 독창성, 유연성 등에 각각 어떤 영향을 미치는지 20주의 프로그램을 개발, 진행하여 그 효과를 검증하고자 한다. 개방형 문
The Journal of Korean Institute of Communications and Information Sciences
/
v.18
no.12
/
pp.1806-1814
/
1993
Efficient speech coders using tree coding combined with harmonic scaling are designed at the rate of 4.8 kilobitts/sec (kbps). A time domain harmonic scaling algorithm (TDHS) is used to compress input speech by a factor of two. This process allows the tree coder have 1.5 bits/sample for 4.8 kbps in the case of a 6.4 kHz sampling rate. In the backward adaptive tree coder, there are three components of the code generator, including a hybrid adaptive quantizer, a short-term predictor and a pitch predictor. The robustness of the tree coder is achieved by carefully choosing the input of the short term predictor adaptation. Also, inclusion of a smoother in the pitch predictor improves the error performance of tree coder in the noisy channel. Subjectively, tree coding combined with TDHS provides good quality speech at 4.8 kbps.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.