• Title/Summary/Keyword: 예측비율

Search Result 1,223, Processing Time 0.021 seconds

Empirical Study on Credit Spreads in Korea Corporate Market : Using Mean-Reverting Leverage Ratio Model (목표부채비율 회귀 모형을 이용한 한국채권시장의 신용가산금리에 대한 실증연구)

  • Kim, Jae-Woo;Kim, Hwa-Sung
    • The Korean Journal of Financial Management
    • /
    • v.22 no.1
    • /
    • pp.93-118
    • /
    • 2005
  • This paper examines credit spreads in Korea corporate market using one of structural models, the mean reverting leverage ratio model (Collin-Dufresne and Goldstein (2001)). Compared to the actual credit spreads, we show that the credit spreads induced by the model are overpredicted. We also investigate the systematic errors that cause the over-pre-diction of credit spreads using the t-test. We show that the systematic errors are affected by the current leverage ratio and asset volatility.

  • PDF

기업도산예측(企業倒産豫測)에 관(關)한 실증적(實證的) 연구(硏究)

  • Jeong, Heon-Ung
    • The Korean Journal of Financial Studies
    • /
    • v.4 no.1
    • /
    • pp.123-149
    • /
    • 1998
  • 우리 나라 경제는 1993년 이후로 호황을 유지하다가 1996년 말부터는 경제불황이 닥쳐, 현재는 구제금융이라는 최악의 경제혼란기에 처해 있다. 하루에도 기업의 도산은 부지기수로 발생되고 있으며, 도산으로 인하여 국민들은 직장을 싫고 물가인상 등으로 가계마저 흔들리고 있는 실정이다. 이러한 이유로 본 연구에서는 재무비율에 의한 기업도산예측모델을 설정하려고 한다. 연구의 자료는 1996년 3월 은행연합회에서 개발한 '기업신용평가표'에 나타난 재무비율을 이용하였다. 연구의 결과를 보면 '기업신용평가표'의 변수는 기존연구에 비교하여 보면 도산예측력이 낮은 편인데, 그 이유는 기존연구는 대부분 통계적으로 검증된 5-6개의 변수를 대상으로 도산예측력을 나타내고 있는데 반하여, 본 연구에서는 기업신용평가표에서 선정된 모든 변수를 대상으로 분석했기 때문이다. 그러나 대체적으로 분석하여 볼 때 기업신용평가표의 재무비율 선정은 양호한 편으로 생각된다. 그러나 본 연구의 주목적은 신용평점에 의한 도산예측력분석이므로 본 연구의 선정모형에서 나타난 자기자본비율, 현금흐름/총부채(고정장기적합율), 매출액경상이익율, 총자본순이익율, 영업자산회전율 등은 기업신용평가내지 도산예측분석에 유용한 것으로 나타났다.

  • PDF

Evaluation of Corporate Distress Prediction Power using the Discriminant Analysis: The Case of First-Class Hotels in Seoul (판별분석에 의한 기업부실예측력 평가: 서울지역 특1급 호텔 사례 분석)

  • Kim, Si-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.520-526
    • /
    • 2016
  • This study aims to develop a distress prediction model, in order to evaluate the distress prediction power for first-class hotels and to calculate the average financial ratio in the Seoul area by using the financial ratios of hotels in 2015. The sample data was collected from 19 first-class hotels in Seoul and the financial ratios extracted from 14 of these 19 hotels. The results show firstly that the seven financial ratios, viz. the current ratio, total borrowings and bonds payable to total assets, interest coverage ratio to operating income, operating income to sales, net income to stockholders' equity, ratio of cash flows from operating activities to sales and total assets turnover, enable the top-level corporations to be discriminated from the failed corporations and, secondly, by using these seven financial ratios, a discriminant function which classifies the corporations into top-level and failed ones is estimated by linear multiple discriminant analysis. The accuracy of prediction of this discriminant capability turned out to be 87.9%. The accuracy of the estimates obtained by discriminant analysis indicates that the distress prediction model's distress prediction power is 78.95%. According to the analysis results, hotel management groups which administrate low level corporations need to focus on the classification of these seven financial ratios. Furthermore, hotel corporations have very different financial structures and failure prediction indicators from other industries. In accordance with this finding, for the development of credit evaluation systems for such hotel corporations, there is a need for systems to be developed that reflect hotel corporations' financial features.

재무정책과 기업부실예측

  • Park, Jeong-Yun
    • The Korean Journal of Financial Studies
    • /
    • v.6 no.1
    • /
    • pp.93-117
    • /
    • 2000
  • 본 논문의 목적은 1991년부터 1996년까지 부실이 된 상장기업 41개사와 이에 대응하는 118개 건전기업의 표본을 가지고 주요 재무정책변수를 이용하여 로짓분석에 의한 기업부실예측모형을 구축하는데 있다. 본 연구에서는 기존연구와는 달리 이론적으로 타당하고 재무경영자의 관심대상인 투자정책변수, 자본조달정책변수 및 배당정책변수를 가장 잘 반영한다고 판단되는 12개의 재무비율을 사전적으로 선정하였다. 이들 12개의 재무비율에 대해 부실기업과 건전기업을 가장 잘 판별할 수 있는 재무비율을 선정하기 위하여 프로파일 분석과 두 표본 t검정을 하였다. 그 결과 투자정책, 자본조달정책, 그리고 배당정책을 대표하는 변수로 자기자본순이익률, 총자본부채비율 및 배당율이 각각 채택되었다. 그리고 현금흐름변수를 추가하였다. 이 네 변수를 이용하여 로짓분석을 실행하였다. 먼저 부실 1년전부터 부실 5년전까지 각 연도별로 부실예측모형을 추정하였다. 부실 1년전의 추정모형에 의하면 총자본부채비율을 제외한 모든 계수의 부호는 (-)로 모두 기대했던 대로 나타났다. 전체적으로 볼 때 부실 4-5년 전에는 자기자본순이익률과 총자본부채비율이 기업부실에 유의한 영향을 주나 부실전 3년간은 현금흐름과 배당률의 크기가 부실에 영향을 주는 것으로 나타났다. 본 연구는 부실예측모형을 기업의 재무정책적인 관점에서 추정하였다는 데 그 의의가 있다고 할 수 있다.

  • PDF

심전도를 통한 졸음운전 예측 타당성 검증

  • Hwang, Gyeong-In;Choe, Eun-Ju;Kim, Seul;Kim, Hyeon-Jeong;Eom, Ji-Eun;Lee, Jae-Hui;Lee, Gye-Hun;Mun, Gwang-Su;O, Se-Jin
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.561-567
    • /
    • 2013
  • 본 연구는 졸음운전의 지표로 예상되는 심전도의 LF/HF 비율이 효과적으로 졸음운전을 예측하는지를 검증하는 것이었다. 본 연구는 총 31명이 참가하였으며, 가상 운전 시뮬레이션 과제를 활용하여 진행하였다. 수면박탈이 운전 중 LF/HF 비율에 영향을 미치는지를 검증하기 위해 충분한 수면을 취한 조건과 수면이 박탈된 조건으로 실험을 실시하였다. 충분한 수면을 취한 조건에서 참가자는 전날 6시간 이상의 수면을 취한 후 30분동안 진행되는 가상 운전과제를 수행하였다. 수면이 박탈된 조건에서는 실험에 참여하기 전날에 참가자가 5시간 이하의 수면을 취하도록 유도한 후 60분 동안 진행되는 가상 운전 과제에 참여하도록 하였다. 참가자는 두 조건 모두에서 심전도를 측정할 수 있는 장비를 착용한 상태로 가상 운전 과제를 수행하였다. LF/HF 비율과 지각된 졸음운전과의 관계성을 확인하기 위해서 참가자가 가상 운전 과제를 수행하는 동안 10분간격으로 주관적 졸림정도를 측정하였다. 실험 결과 충분한 수면을 취한 조건보다 수면박탈 조건에서 참가자의 LF/HF 비율이 감소하였으며, 동일하게 주관적 졸림정도는 증가하였다. 또한 주관적 졸림정도가 LF/HF비율을 예측하는 것으로 나타났다. 따라서 LF/HF 비율을 통한 졸음 운전 예측은 타당한 것으로 나타났다.

  • PDF

예측치 이익을 이용한 EVA 기업가치모형에 관한 연구

  • Jo, Jang-Yeon;Gang, Hyo-Seok
    • The Korean Journal of Financial Studies
    • /
    • v.6 no.1
    • /
    • pp.117-140
    • /
    • 2000
  • 본 연구는 그간 실무계와 학계에서 주목을 받고 있는 EVA 모형과 기업가치모형간의 상호 관계를 보여주고 실증적으로 예측치 경상이익과 순이익을 이용하여 EVA와 기업가치를 측정하고 이러한 예측가치와 실제가치와의 관계를 살펴보았다. 1990년부터 5년간 모두 535 기업을 대상으로 분석한 결과 강효석과 남명수 (1998)의 연구와 같이 모든 연도에 부의 EVA를 보여 주고 있으며 1년 예측치보다 2년 예측치를 기초로 산정한 기업가치가 실제가치에 근접하였다. 각 연도 별로 보면 예상경상이익을 사용한 경우 70%부터 94%까지의 높은 설명력을 보여주며, 5년 누계는 83%의 설명력을 나타냈다. 경상이익 대신 순이익을 사용한 경우도 유사한 결과를 보여주고 있다. 끝으로 가치평가오차를 원천별로 그리고 유형별로 분석하였는데 기업가치 예측오차 중 경제전반이 설명하는 부분은 10%정도, 산업은 $13{\sim}15%$, 그리고 개별기업이 $75{\sim}77%$를 차지하고 있어 개별기업의 중요도가 미국에 비하여 낮은 수준을 보여주고 있다. 유형별로도 편의비율이나 회귀비율이 $5{\sim}8%$수준인데 비하여 무작위 비율이 86%수준을 보여 주고있다.

  • PDF

Evaluation of Distress Prediction Model for Food Service Industry in Korea : Using the Logit Analysis (국내 외식기업의 부실예측모형 평가 : 로짓분석을 적용하여)

  • Kim, Si-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.151-156
    • /
    • 2019
  • This study aims to develop a distress prediction model and to evaluate distress prediction power for the food services industry by using 2017 food service industry financial ratios. Samples were collected from 46 food service industries, and we extracted 14 financial ratios from them. The results show that, first, there are eight ratios (financial ratio, current ratio, operating income to sales, net income to assets, ratio of cash flows, income to stockholders' equity, rate of operating income, and total asset turnover) that can discriminate failures in food service industries and the top-level food service industries. Second, by using these eight financial ratios, the logit function classifies the top-level food service industries, and failures in the food service industry can be estimated by using logit analysis. The verification results as to accuracy in the estimated logit analysis indicate that the model's distress-prediction power is 89.1%.

생명보험회사 수익률 결정요인에 관한 연구

  • Sin, Dong-Ju
    • The Korean Journal of Financial Studies
    • /
    • v.5 no.1
    • /
    • pp.213-236
    • /
    • 1999
  • 최근 우리 나라는 금융환경의 변화가 진전됨에 따라 보험산업에도 변화가 일어나기 시작했다. 이에 따라 보험산업은 지급능력 및 수익성에 관심을 갖게 되었다. 이에 본 연구에서는 국내 생명보험회사의 투자수익율이 재무제표에 나타난 요인에 의해 어떻게 결정되는가를 살펴봄으로써 수익률 결정요인을 찾는데 있다. 본 연구에서 사용한 자료는 생명보험회사 33개사 중에서 외국사를 제외한 29개사를 선택하여 수집하였다. 분석 기간은 1989년부터 1996년까지이며, 생명보험회사는 기존사, 지방사, 내국사, 합작사로 구분하였다. 분석결과, 시차별 분석에서는 결정계수가 기간이 짧을수록 높게 나타났고 예측된 부호는 잉여금, 사업비율이 반대로 나타났다. 그룹별 분석에서는 기존사, 내국사, 지방사, 합작사의 모델이 각각 유의수준 5%에서 유의하였고 결정계수는 높게 나타났다. 예측부호는 자산증가율과 사업비율, 수입보험료 증가율(기존사 제외), 부채/자본비율(기존사 제외)이 일치하지 않았다. 경영평가제도에 의한 분석에서는 결정계수가 높은 편이며, 유의수준 5%에서 유의하였다. 자본증가율은 예측된 부호와 일치하나 영향력이 거의 없는 것으로 나타났다. 유동성 비율은 신설사(내국사, 지방사, 합작사)가 예측부호와 반대의 경우로 나타났다. 또한 총자산은 투자수익율과 규모에 의해 결정되지 않은 것으로 나타났다. 모집인은 투자수익율에 유의적이나 직접적인 투자요인이 아닌 것으로 분석되었다. 기존연구와 비교해 볼 때, 한국 생명보험회사의 잉여금과 효력상실 해약율은 기존연구 모형과 예측부호가 일치하나 나머지 변수는 그룹간 다소 상이하게 나타났다. 결론적으로 본 연구의 분석 결과, 예측부호는 다소 차이가 있는 것으로 나타났고, 유의적인 변수는 없는 것으로 분석된다.

  • PDF

Development of Model Estimating Fertility Rate for Korea (출산율 예측 모형 개발)

  • Lee, Sam-Sik;Choi, Hyo-Jin
    • Korea journal of population studies
    • /
    • v.35 no.1
    • /
    • pp.77-99
    • /
    • 2012
  • This study aimed at developing a model for estimating fertility rates for Korea under some conditions. The model is expected to provide the basic information for establishing and evaluating the polices in prompt and adequate response to low fertility and population ageing. The model was established on the basis of experiences by some OECD countries in Europe, having experienced the fertility increase trend and being economically well-developed, because Korea has never experienced the steady increase in fertility rate since 1960. This study collected about 20 years' time series data for each of selected countries and applied to the regression model, which is called a 'panel analysis' to take into considerations both cross-sectional and longitudinal aspects of fertility change simultaneously. Simulation of the model for Korea and some panel countries showed a very small difference, less than 0.1, between the estimated rate and the observed rate for each year during 2006~2010. Thus, the model, as established in this study, is evaluated as accurate or well-fitted to a considerable extent.

  • PDF

Quantitative Analysis of GIS-based Landslide Prediction Models Using Prediction Rate Curve (예측비율곡선을 이용한 GIS 기반 산사태 예측 모델의 정량적 비교)

  • 지광훈;박노욱;박노욱
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.199-210
    • /
    • 2001
  • The purpose of this study is to compare the landslide prediction models quantitatively using prediction rate curve. A case study from the Jangheung area was used to illustrate the methodologies. The landslide locations were detected from remote sensing data and field survey, and geospatial information related to landslide occurrences were built as a spatial database in GIS. As prediction models, joint conditional probability model and certainty factor model were applied. For cross-validation approach, landslide locations were partitioned into two groups randomly. One group was used to construct prediction models, and the other group was used to validate prediction results. From the cross-validation analysis, it is possible to compare two models to each other in this study area. It is expected that these approaches will be used effectively to compare other prediction models and to analyze the causal factors in prediction models.