In this paper, we propose a method for intensity correction using binarization-based region segmentation in 3D stereoscopic images. In the proposed method, 3D stereoscopic right image is segmented using binarizarion. Small regions in the segmented image are eliminated. For each region in right image, a corresponding region in left image is decided through region matching using correlation coefficient. When region-based matching, in order to prevent overlap between regions, we remove a portion of the area closed to the region boundary using morphological filter. The intensity correction in left and right image can be performed through histogram specification between the corresponding regions. Simulation results show the proposed method has the smallest matching error than the conventional method when we generate the right image from the left image using block based motion compensation.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.11a
/
pp.131-132
/
2011
폐색 영역의 발생은 스테레오 영상에서 발생하는 어려운 문제이다. 본 논문에서는 폐색 영역을 처리함으로 스테레오 영상에서의 변위 지도를 향상 시키는 방법에 대해서 제안한다. 변위 지도 향상을 위해서 우선 초기의 변위 지도를 생성한다. 폐색 영역은 이미 얻은 스테레오 변위 지도로부터 유일성 제약사항(Uniqueness constraint)에 의해서 계산된다. 계산된 폐색 영역은 두 가지 유형으로 분류가 되고, 이들에 각각에 적합한 폐색 영역 처리 방법이 적용된다. 주변 정보에 기반한 제안하는 방법은 보이는 영역에서의 변위 값을 폐색 영역에 위치한 화소로 확장한다. 실험 결과는 제안하는 방법이 폐색 영역에서의 잘못된 변위 값들을 보정 하여 변위 지도의 성능이 향상되었음을 보여준다.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.110-113
/
2002
통신과 멀티미디어 기술의 발전으로 대용량의 멀티미디어 자료에 대한 효율적인 검색 방법이 대두되고 있다. 본 논문에서 다루고자 하는 동영상 장면전환 검출 연구는 멀티미디어 데이터베이스의 내용기반 비디오 정보검색 및 비디오 데이터 인덱싱 구현의 기반이 되는 첫번째 단계의 핵심적인 분야에 속한다. 비디오 데이터를 내용기반으로 처리 하기 위해서는 우선 비디오데이터를 연속성에 의한 유사 영역으로 분할하여야 한다. 동영상을 분할하기 위한 방법으로 비디오의 불연속점을 찾아내는 장면전환 검출이 널리 사용되어 이에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 기존의 방법인 히스토그램 방식과 에지검출 방식의 장단점을 비교하고 두 알고리즘의 장점을 혼합한 방식을 제안하였다. 영상을 1차로 히스토그램의 피크값과 계곡특징값을 이용하고 2차로 에지검출 방식으로 두 단계로 나누어 처리하여 속도향상과 정확도를 높이고자 하는 방법을 제안하였다. 그리고 실험을 통하여 기존의 방법들과의 비교 분석을 통하여 성능평가를 하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.314-317
/
2011
본 논문은 상향식 현저함 모델을 이용하여 입력 영상으로부터 시각적 주의를 갖는 영역들을 자동으로 검출하는 방법을 제안한다. 제안한 방법에서는 인간의 시각 시스템과 같이 사전 지식 없이 시각정보의 공간적인 분포에 근거하여 장면을 해석하는 상향식 현저함 모델 방법을 입력 영상에 적용하여 관심 물체 영역을 검출하는 연구이다. 상향식 현저함 방법은 Treisman의 세부특징이론 연구에서 제시한 바와 같이 시각적 주의를 갖는 영역은 시각정보의 현격한 대비차이를 가지는 영역으로 집중되어 배경에서 관심영역을 구분할 수 있다. 입력 영상에서 현저함 모델을 통해 3차원 현저함 맵을 생성한다. 그리고 생성된 현저함 맵으로부터 실제 관심영역들을 검출하기 위해 제안한 방법에서는 적응적 임계치 방법을 적용하여 관심영역을 검출한다. 제안한 방법을 관심영역 분할에 적용한 결과, 영역 분할 정확도 및 정밀도가 약 88%와 89%로 제시되어 관심 영상분할 시스템에 적용이 가능함을 알 수 있다.
The Transactions of the Korea Information Processing Society
/
v.7
no.1
/
pp.286-295
/
2000
We present a novel statistically adaptive method using the Minimum Description Length(MDL) principle for unsupervised segmentation of magnetic resonance(MR) images. In the method, Markov random filed(MRF) modeling of tissue region accounts for random noise. Intensity measurements on the local region defined by a window are modeled by a finite Gaussian mixture, which accounts for image inhomogeneities. The segmentation algorithm is based on an iterative conditional modes(ICM) algorithm, approximately finds maximum ${\alpha}$ posteriori(MAP) estimation, and estimates model parameters on the local region. The size of the window for parameter estimation and segmentation is estimated from the image using the MDL principle. In the experiments, the technique well reflected image characteristic of the local region and showed better results than conventional methods in segmentation of MR images with inhomogeneities, especially.
최근 영상처리 및 컴퓨터비전 등 많은 분야에서 딥러닝 기술이 빠르게 발전하면서 다양한 문제들을 높은 성능으로 해결하고 있다. 이에 MPEG (Moving Picture Experts Group) 표준에서도 딥러닝 기반의 미디어 기술이 활발히 제안 및 논의되고 있다. 특히, 몰입형 입체영상 압축을 위한 MPEG-I (MPEG Immersive) 표준은 메타버스 산업으로 크게 관심받고 있는 가상현실, 증강현실, 그리고 혼합현실 등에 대응하기 위해 현재 활발히 연구 중이다. 입체영상은 일반적으로 복수 시점의 컬러영상과 깊이영상으로 구성되어 있어 데이터의 양이 크기 때문에, MPEG-I 표준은 시점 간의 중복된 영역들을 제거하는 프루닝 과정을 통해 효율적인 압축을 수행한다. 하지만, 프루닝 과정에서 정반사 영역이 함께 제거되는 문제로 정확한 입체영상 복원에 한계가 있다. 본 학회지에서는 이러한 문제점을 해결하기 위하여 MPEG-I 표준에 기고된 딥러닝 기반의 정반사 영역 검출을 통한 몰입형 입체영상 압축에 대해 소개한다.
Proceedings of the Korea Information Processing Society Conference
/
2002.11a
/
pp.455-458
/
2002
분기를 가지는 대상객체에 대한 가상 네비게이션 시 네비게이션 경로를 지정하기 위하여 일반적으로 반복적인 형태학적 연산(Iterative Morphological Operation)중 세선화(thining)연산을 기반으로 한 골격화(skeletonization)기법들이 널리 사용되었다. 이러한 방법은 반복적인 세선화 연산 수행과정을 거쳐야하므로 수행효율성이 떨어지고, 잡음에 의하여 잘못된 경로를 생성하기 쉽다. 본 연구에서 수행효율성을 개선하고, 잡음에 안정적으로 네비게이션 경로를 추적하기 위하여 영역 중심점 선형 보간 기법을 기반으로 한 네비게이션 경로추적 기법을 제안한다. 본 제안 기법에서는 2 차원 영상 분할 후, 분할 영상에 대한 영역의 수와 영역 중심점을 기반으로 분기위치를 추적하고, 분기영역에서의 영역 중심점 선명 보간을 통하여 자연스러운 네비게이션 경로를 생성한다.
Proceedings of the Korean Society of Computer Information Conference
/
2015.07a
/
pp.272-274
/
2015
본 논문에서는 하천 인근의 재난 방지를 위한 효율적인 재난감지 알고리즘을 제안한다. 제안하는 알고리즘은 영상처리를 기반으로 임계값을 자동으로 변경시켜 물과 물이 아닌 영역을 분리한다. 수위감지 알고리즘을 단순 물의 색상 정보만을 이용해 분석한다면, 야간 저조도, 폭우와 같은 상황 등에서 알고리즘 성능이 저하될 우려가 있다, 이를 해결하기 위해서 물의 색상 정보뿐 아니라 물의 흔들림 정도도 함께 고려하여 물의 영역을 찾아낸다. 또한 보다 안정적인 수위 분포를 분석하기 위해서 시간과 공간에 대한 필터링을 추가하여 빗물, 물결, 카메라의 화이트 노이즈 등 다양한 노이즈에 보다 안정적으로 수위 분포를 분석한다. 본 논문에서 제안하는 수위감지 알고리즘을 적용한다면, 센서, 목자판 인식 등 이전의 수위계측 방식보다 성능, 비용 면에서 모두 우수할 것으로 예측된다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.359-360
/
2021
The pixel-based processing of an image refers to a process of converting a value of one pixel only depending on the value of the current pixel, regardless of the value of another pixel. Pixel-based processing is used as the most basic operation in many fields such as image conversion, image enhancement, and image synthesis. There are processing methods such as arithmetic operation, histogram smoothing, and contrast stretching. In this paper, in order to clearly distinguish the tidal flat region from the tidal flat image of the west coast taken with a drone, we seek a method to find an efficient outline using pixel-based processing in the boundary detection part of the pre-processing process.
Proceedings of the Korea Information Processing Society Conference
/
2008.05a
/
pp.95-98
/
2008
본 논문은 기존의 질감기반 (texture) 얼굴검출 시스템에서 컬러 영상을 도입하여 성능개선의 중요한 부분인 얼굴 오검출율을 줄이는 방법을 제안한다. 얼굴 영상의 컬러 성분은 흑백 성분과 비교하여 낮은 공간 주파수 영역을 가지는 특징이 있다. 질감기반 얼굴검출에서 높은 대비 (contrast) 성분의 에지는 얼굴이 아닌 영역에서 얼굴로 오인할 수가 있다. 본 논문에서는 이런 오인을 감소하기 위해 독립적인 컬러 채널 성분들을 질감기반 얼굴 검출에 각각 이용하여 그 얻어진 결과들을 융합 (fusion) 하는 방법을 제안한다. 실험결과로 제안한 칼라 채널 융합 방법을 통해 얻은 얼굴 검출율은 기존 흑백 영상과 비슷하게 유지되며 오검출율을 현저히 줄이는 것을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.