야외에서 인지되는 자연 경치는 다양한 개체, 빛의 산란, 또는 변화를 주는 많은 요소들 때문에 컴퓨터 영상처리에서 인식하기가 쉽지 않다. 본 논문에서는 다층 인지 신경망을 이용하여 도로가 포함된 야외영상에 나타나는 개체들을 인식하는 방법을 연구하였다. 자연 영상을 영역화한 후, 각각의 영역들에 대하여 색상과 기하학적인 특성에 근거하여 특성벡터를 추출하고 이를 신경망에 입력하여 각 영역을 구분하는 2단계의 알고리듬을 제안한다. 먼저 야외 영상들을 개선된 영역 확장법과 병합과정에 의하여 개체별로 영역화하였다. 영역화된 연상은 자연 영상과 함께 영상 데이타베이스에 저장되고, 이 자료들을 이용하여 각 영역의 특성벡터를 계산하였다. 이 특성 벡터를 구성된 신경망의 입력층에 전달하면, 각 영역은 27개의 개체 중의 하나로 출력층에서 인식된다. 제안된 방법은 학습에 사용된 데이타, 학스베 사용되지 않은 새로운 데이타, 그리고 모두 합하여 놓은 데이타의 세가지 데이타 군에서 무작위로 선별하여 인식률을 측정하였다. 학습된 데이타에서는 99.4%까지의 인식률을 보여주었고, 학습되지 않은 데이타에 대해서도 최고 89.1%까지의 인식률을 나타내었다. 제안된 방법은 평균적으로 88.1%~97.9%의 인식률을 보여주어 자연 경치의 인식에 신뢰성이 있는 방법으로 사용될 수 있음을 증명하였다.
프랙탈 영상압축은 원 영상블록과 가장 유사한 영역을 원영상 내에서 찾는 자기유사성에 기반한 축소변환을 이용하여 영상데이터를 압축시키는 방법이다. 프랙탈은 영상데이터를 압축하는 효율적인 방법으로 인정을 받고 있으나 상대적으로 높은 영상 왜곡률과 부호화 시간이 오래 걸리는 단점을 가지고 있다. 본 논문은 프랙탈의 영상 왜곡률 특성을 개선하기 위하여 프랙탈과 벡터양자화기를 혼합하였으며, 벡터양자화기의 클러스터링 알고리듬으로는 개선한 Self Organizing Feature Map(SOFM)을 사용하였다. 제안된 시스템의 성능평가를 위하여 일반적인 SOFM을 사용한 시스템 그리고 프랙탈을 단독으로 사용한 시스템과 비교하여 전체적인 성능 향상 정도를 확인하였다. 그 결과 개선한 경쟁학습 SOFM을 사용한 벡터양자화기와 프랙탈 혼합시스템이 일반적인 SOFM을 사용한 벡터양자화기와 프랙탈 혼합시스템보다 영상 왜곡특성이 향상된 것을 확인하였다.
기존의 비디오 부호화 표준에서는 참조영상을 보간하여 해상도를 증가시킨 후, 고정된 움직임 벡터 해상도로 영상 전체를 부호화 한다. 참조 영상의 해상도를 증가시킨 만큼 움직임 보상에 의하여 예측에러가 줄어들지만, 움직임 벡터 해상도가 증가한 만큼 움직임 벡터의 부호화 비트량이 증가한다. 고정된 해상도의 움직임 벡터로 부호화하는 경우, 영상의 지역적인 움직임 특성이 다른 경우 부호화 효율이 떨어질 수 있다. 따라서 본 논문에서는 기존의 비디오 부호화 표준들이 영상의 지역적인 특성을 고려하지 않고 고정된 해상도의 움직임 벡터를 사용하여 부호화하는 문제점을 극복하기 위하여 슬라이스 단위로 1/4 화소 해상도 또는 1/8 화소 해상도 또는 움직임 벡터 단위로 적응적으로 화소 해상도를 결정하는 것 중에서 최적의 슬라이스 움직임 벡터 해상도를 결정하여 부호화하는 방법을 제안한다. 제안한 방법을 사용하여 부호화하면 움직임 벡터의 부호화 비트의 낭비를 막고, 예측 에러도 줄어들어 부호화 효율을 높일 수 있다. 제안하는 방법을 사용하여 부호화 하는 경우 H.264/AVC와 비교하여 평균 1.97%의 BD-RATE을 감소한다.
본 논문에서는 인간의 시각 특성의 하나인 공간 지각 특성을 고려하여 고유벡터를 이용한 이진 트리 벡터양자화를 하는 개선된 양자화 기법을 제안한다. 제안 방법은 고유벡터를 이용한 이진 트리 벡터 양자화의 두노드로 분할하는 과정에 영상의 블록 내 칼라 변화에 따른 시각 시스템의 특성을 가중치로 결합하여 양자화를 하였다. 그리고 원영상의 밝기성분과 양자화영상의 밝기성분의 차영상을 이용해 MTF(modulation transfer function)를 고려하여 양자화 영상의 화질을 평가한다. 제안 방법은 적은 레벨의 양자화된 영상을 구할 수 있었으며. 영상이 차지하는 자원을 효과적으로 감소시킬 수 있었다. 이는 기존의 방법보다 색상이 선명해지며 유사한 영역의 분할에 뛰어난 성능을 보여주었다.
위성영상은 그 특성상 다중대역과 방대한 양의 영상 데이터로 이루어져 있으며, 방대한 양의 데이터에서 필요한 영상정보를 검색하기 위해서는 위성영상 검색에 적용 가능한 다중대역의 화소벡터, 질감 및 이들의 공간분포를 효과적으로 얻어낼 수 있는 속성을 추출하여 활용하는 것이 필요하다. 따라서 본 논문에서는 위성영상 검색에 유용하게 사용할 수 있는 속성으로 다중대역의 화소벡터 값과 질감 정보를 동시에 추출하면서 UV(Color Coherent Vector)의 개념을 적용하여 이들의 공간분포에 관한 정보를 포함한 새로운 속성을 정의하였고, SPOT 위성영상을 이용하여 국부적인 질의 영상의 속성벡터와 광범위한 지역의 위성영상에서 부분영상들의 속성벡터와의 유사성 비교를 통하여 원하는 부분영상을 검색하는 방법으로 그 성능을 평가하였다. 제안된 검색방식은 칼라와 질감 그리고 이들의 공간적인 분포 등을 개별적으로 추출하여 조합하는 과정이 필요 없으며, 특히 위성영상이나 특정 도메인에 종속되지 않기 때문에 다양한 내용기반 영상정보 검색에 효과적으로 이용될 수 있을 것으로 사료된다.
자동 벡터링 도구는 스캐닝된 도면 영상으로부터 벡터 데이터를 자동으로 생성시키기 위해 사용된다. 기존의 벡터링 도구에서는 벡터링 작업도중 과다한 사용자 개입을 요구하고 있어 생산성 및 정확성이 저하되는 문제점을 가지고 있다. 이를 효과적으로 해결하기 위해, 본 논문에서는 스캐닝 된 도면영상에서 자동화에 문제가 될 수 있는 부분을 찾아 제거하기 위한 전처리 방법과 벡터링 대상물의 기하학적 특성을 잘 반영해 줄 수 있는 자동 선추적 방법, 사용자 편의 우주의 벡터 데이터 편집 수정 작업을 위한 후처리 방법을 이용해 자동 벡터링 도구를 설계하였다. 또한, 입력되는 도면 영상 중 과도한 전처리가 요구되는 영상은 사용자가 직접 화면을 보면서 디지타이징할 수 있는 화면 디지타이징 방법도 포함시켰다. 실험을 통해 구현된 자동 벡터링 도구가 기존의 반자동 벡터링 도구에 비해 효율성 및 정확성이 높다는 것을 확인하였다.
이 논문에서는 wavelet과 sobel filter를 사용하여 영상의 객관적인 평가 점수를 계산하는 새로운 기법을 제안한다. 이 기법은 orthogonal wavelet 변환을 기초로 하고 있으며 원본 영상과 처리된 영상 데이터가 모두 가용하다는 것을 전제로 한다. Wavelet을 이용해 주파수에 따라 분할된 영상 정보를 이용해 각각의 부영역 별 차영상을 획득하고 이 획득된 영상의 에너지를 이용해 화질 평가 수치를 계산한다. 부영역 별로 획득된 영상은 일정한 크기의 블록으로 분할되어 동일한 블록 내에서 가용한 영상의 특징에 관한 정보(contrast, edge 영역의 분포 정도) 벡터와 내적하여 새로운 특징 벡터로 사용되고, 이 특징 벡터의 가중치를 최적화하여 높은 상관도의 화질평가 점수를 산출하게 된다.
본 논문에서는 영상의 형태 정보를 이용하여 내용 기반 영상 검색을 수행할 수 있는 방법으로, 질의(query) 영상의 의사 저나이크 모멘트에서 영상내의 물체 형태에 대한 기여도가 가장 큰 모멘트를 추출하여 영상 전체의 형태 정보를 대표하는 특징벡터로 정하여 영상 검색을 수행하는 방법과, 영상의 인터레스트 포인트에서 미분 불변치 벡터와 위치 특성 벡터를 계산하여 영상의 지역 형태 정보를 대표하는 특징벡터로 정하여 영상 검색을 수행하는 방법, 그리고 두가지 방법을 모두 고려하여 영상 검색을 수행하는 방법을 제시한다. 트레이드마크 영상 데이터베이스에 대해 영상 검색을 수행하여 기존의 영상 검색 방법과의 비교를 통하여 제안한 방법의 우수함을 보인다.
본 논문에서는 최소 계승 선형 예측 방식의 에지 방향성을 이용하여 공간영역에서의 다양한 움직임 벡터 예측기를 적응적으로 설정하는 방식을 제안하고자 한다. 적응 움직임 예측 방식은 동영상 움직임 벡터가 국부 통계적인 특성의 돌연한 변화로 특징지어진다는 것을 바탕으로 예측기를 움직임 벡터의 통계적인 특성에 따라 전환하는 방식이다 본 논문에서 사용된 최소 계승 예측 방식은 움직임 벡터의 다양한 통계적 특성을 이용하여 국부적으로 움직임 벡터 예측 계수를 최적화하지만 최적화 과정에서 매우 큰 계산량을 갖게 됨으로 실제적으로 적용하기가 어려웠다. 그러므로 본 논문에서는 최소 계승 예측 방식을 에지 방향성의 관점에서 재해석하여 적응적으로 움직임 벡터 예측기를 개선하므로 계산량을 줄이면서 일정한 성능을 유지함을 확인 할 수 있었다.
본 논문에서는 최소 계승 선형 예측 방식의 에지 방향성을 이용하여 공간영역에서의 다양한 움직임 벡터 예측기를 적응적으로 설정하는 방식을 제안하고자 한다. 적응 움직임 예측 방식은 동영상 움직임 벡터가 국부 통계적인 특성의 돌연한 변화로 특징지어진다는 것을 바탕으로 예측기를 움직임 벡터의 통계적인 특성에 따라 전환하는 방식이다. 본 논문에서 사용된 최소 계승 예측 방식은 움직임 벡터의 다양한 통계적 특성을 이용하여 국부적으로 움직임 벡터 예측 계수를 최적화 하지만 최적화 과정에서 매우 큰 계산량을 갖게 됨으로 실제적으로 적용하기가 어려웠다. 그러므로 본 논문에서는 최소 계승 예측 방식을 에지 방향성의 관점에서 재해석하여 적응적으로 움직임 벡터 예측기를 개선하므로 계산량을 줄이면서 일정한 성능을 유지함을 확인 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.