• Title/Summary/Keyword: 영상 기반 화재 감지

Search Result 38, Processing Time 0.026 seconds

A Study on forest fires Prediction and Detection Algorithm using Intelligent Context-awareness sensor (상황인지 센서를 활용한 지능형 산불 이동 예측 및 탐지 알고리즘에 관한 연구)

  • Kim, Hyeng-jun;Shin, Gyu-young;Woo, Byeong-hun;Koo, Nam-kyoung;Jang, Kyung-sik;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1506-1514
    • /
    • 2015
  • In this paper, we proposed a forest fires prediction and detection system. It could provide a situation of fire prediction and detection methods using context awareness sensor. A fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire in complex situations. In addition, it is possible to differential management of intensive fire detection and prediction for required dividing the state of fire zone. Therefore we propose an algorithm to determine the prediction and detection from the fire parameters as an temperature, humidity, Co2 and the flame in real-time by using a context awareness sensor and also suggest algorithm that provide the path of fire diffusion and service the secure safety zone prediction.

Fundamental Study on Algorithm Development for Prediction of Smoke Spread Distance Based on Deep Learning (딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • This is a basic study on the development of deep learning-based algorithms to detect smoke before the smoke detector operates in the event of a ship fire, analyze and utilize the detected data, and support fire suppression and evacuation activities by predicting the spread of smoke before it spreads to remote areas. Proposed algorithms were reviewed in accordance with the following procedures. As a first step, smoke images obtained through fire simulation were applied to the YOLO (You Only Look Once) model, which is a deep learning-based object detection algorithm. The mean average precision (mAP) of the trained YOLO model was measured to be 98.71%, and smoke was detected at a processing speed of 9 frames per second (FPS). The second step was to estimate the spread of smoke using the coordinates of the boundary box, from which was utilized to extract the smoke geometry from YOLO. This smoke geometry was then applied to the time series prediction algorithm, long short-term memory (LSTM). As a result, smoke spread data obtained from the coordinates of the boundary box between the estimated fire occurrence and 30 s were entered into the LSTM learning model to predict smoke spread data from 31 s to 90 s in the smoke image of a fast fire obtained from fire simulation. The average square root error between the estimated spread of smoke and its predicted value was 2.74.

A Study on the Design of IoT-based Thermal Sensor and Video Sensor Integrated Surveillance Equipment (IoT 기반 열상 센서와 영상 센서 일체형 감시 장비 설계에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.9-13
    • /
    • 2019
  • In this paper, IoT based thermal sensor data and image sensor integrated environmental monitoring system for ship, and it is the monitoring system which can process and transmit the Full HD IP camera image and thermal data transmitted from the thermal module for processing and transmitting, and the viewer S/W is to be developed which provides in real time the information for actual surrounding temperature together with the image, and enables fire prediction which was impossible in the case of the existing equipment by estimating the temperature change as the thermal image is added to the image camera, and saves and analyzes all data while receiving the temperature data and image signal transmitted from the integrated thermal sensor environmental monitoring equipment for ship and displaying them as 2D on the monitoring system.

Home Security System Based on IoT (IoT 기반 홈 보안 시스템)

  • Kim, Kang-Chul;Wang, Ding-Hua;Han, Seok-Bung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.147-154
    • /
    • 2017
  • This paper aims to build a home security system based on IoT to monitor a home on a mobile phone. The system consists of data gathering sensors, camera, gateway and Xively platform. The Raspberry Pi collects data from the three sensors and sends the data to Xively, and sends the video stream of home to a client in a smart phone through a internet. The servers are composed of Xively, socket server in Raspberry Pi and E-mail server in Google. The proposed system transmits e-mail, text message, and video stream when there are motion, fire, and gas leakage, and can control the gas valve through Raspberry Pi. The experimental results show that a user gets 'emergency E-mail' and text message and watches the video stream of the home through WIFI or LTE on a smart phone.

A Study on Flame Detection using Faster R-CNN and Image Augmentation Techniques (Faster R-CNN과 이미지 오그멘테이션 기법을 이용한 화염감지에 관한 연구)

  • Kim, Jae-Jung;Ryu, Jin-Kyu;Kwak, Dong-Kurl;Byun, Sun-Joon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1079-1087
    • /
    • 2018
  • Recently, computer vision field based deep learning artificial intelligence has become a hot topic among various image analysis boundaries. In this study, flames are detected in fire images using the Faster R-CNN algorithm, which is used to detect objects within the image, among various image recognition algorithms based on deep learning. In order to improve fire detection accuracy through a small amount of data sets in the learning process, we use image augmentation techniques, and learn image augmentation by dividing into 6 types and compare accuracy, precision and detection rate. As a result, the detection rate increases as the type of image augmentation increases. However, as with the general accuracy and detection rate of other object detection models, the false detection rate is also increased from 10% to 30%.

ICT Medical Service Provider's Knowledge and level of recognizing how to cope with fire fighting safety (ICT 의료시설 기반에서 종사자의 소방안전 지식과 대처방법 인식수준)

  • Kim, Ja-Sook;Kim, Ja-Ok;Ahn, Young-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.51-60
    • /
    • 2014
  • In this study, ICT medical service provider's level of knowledge fire fighting safety and methods on coping with fires in the regions of Gwangju and Jeonam Province of Korea were investigated to determine the elements affecting such levels and provide basic information on the manuals for educating how to cope with the fire fighting safety in medical facilities. The data were analyzed using SPSS Win 14.0. The scores of level of knowledge fire fighting safety of ICT medical service provider's were 7.06(10 point scale), and the scores of level of recognizing how to cope with fire fighting safety were 6.61(11 point scale). level of recognizing how to cope with fire fighting safety were significantly different according to gender(t=4.12, p<.001), age(${\chi}^2$=17.24, p<.001), length of career(${\chi}^2$=22.76, p<.001), experience with fire fighting safety education(t=6.10, p<.001), level of subjective knowledge on fire fighting safety(${\chi}^2$=53.83, p<.001). In order to enhance the level of understanding of fire fighting safety and methods of coping by the ICT medical service providers it is found that: self-directed learning through avoiding the education just conveying knowledge by lecture tailored learning for individuals fire fighting education focused on experiencing actual work by developing various contents emphasizing cooperative learning deploying patients by classification systems using simulations and a study on the implementation of digital anti-fire monitoring system with multipoint communication protocol, a design and development of the smoke detection system using infra-red laser for fire detection in the wide space, video based fire detection algorithm using gaussian mixture mode developing an education manual for coping with fire fighting safety through multi learning approach at the medical facilities are required.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

A study on the Revitalization of Traditional Market with Smart Platform (스마트 플랫폼을 이용한 전통시장 활성화 방안 연구)

  • Park, Jung Ho;Choi, EunYoung
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.127-143
    • /
    • 2023
  • Currently, the domestic traditional market has not escaped the swamp of stagnation that began in the early 2000s despite various projects promoted by many related players such as the central government and local governments. In order to overcome the crisis faced by the traditional market, various R&Ds have recently been conducted on how to build a smart traditional market that combines information and communication technologies such as big data analysis, artificial intelligence, and the Internet of Things. This study analyzes various previous studies, users of traditional markets, and application cases of ICT technology in foreign traditional markets since 2012 and proposes a model to build a smart traditional market using ICT technology based on the analysis. The model proposed in this study includes building a traditional market metaverse that can interact with visitors, certifying visits to traditional markets through digital signage with NFC technology, improving accuracy of fire detection functions using IoT and AI technology, developing smartphone apps for market launch information and event notification, and an e-commerce system. If a smart traditional market platform is implemented and operated based on the smart traditional market platform model presented in this study, it will not only draw interest in the traditional market to MZ generation and foreigners, but also contribute to revitalizing the traditional market in the future.