• Title/Summary/Keyword: 영상촬영기하

Search Result 181, Processing Time 0.024 seconds

Identification of shear layer at river confluence using (RGB) aerial imagery (RGB 항공 영상을 이용한 하천 합류부 전단층 추출법)

  • Noh, Hyoseob;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.553-566
    • /
    • 2021
  • River confluence is often characterized by shear layer and the associated strong mixing. In natural rivers, the main channel and its tributary can be separated by the shear layer using contrasting colors. The shear layer can be easily observed using aerial images from satellite or unmanned aerial vehicles. This study proposes a low-cost identification method extracting geographic features of the shear layer using RGB aerial image. The method consists of three stages. At first, in order to identify the shear layer, it performs image segmentation using a Gaussian mixture model and extracts the water bodies of the main channel and tributary. Next, the self-organizing map simplifies the flow line of the water bodies into the 1-dimensional curve grid. After that, the curvilinear coordinate transformation is performed using the water body pixels and the curve grid. As a result, the shear layer identification method was successfully applied to the confluence between Nakdong River and Nam River to extract geometric shear layer features (confluence angle, upstream- and downstream- channel widths, shear layer length, maximum shear layer thickness).

Observation and Analysis of Shoreline Changes Using the Remote Unmanned Automatic Camera Monitoring System (원격 무인 자동 영상 관측 시스템을 활용한 해안선 변화 관측 및 분석)

  • 김태림
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • The shoreline changes were observed and analysed using the video image by a remote unmanned automatic camera monitoring system installed at Haeundae beach of Busan City. In order to analyse quantitatively the shoreline changes caused by waves and tides, the image averaging technique and the rectification technique for obliquely acquired image were applied to the video image during the typhoon Bart in September, 1999. The results showed that the camera monitoring system can be used as a very cost effective and efficient tool for monitoring shorelines which change continuously due to waves and tides.

Analysis of Geometrical Relations of 2D Affine-Projection Images and Its 3D Shape Reconstruction (정사투영된 2차원 영상과 복원된 3차원 형상의 기하학적 관계 분석)

  • Koh, Sung-Shik;Zin, Thi Thi;Hama, Hiromitsu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we analyze geometrical relations of 3D shape reconstruction from 2D images taken under anne projection. The purpose of this research is to contribute to more accurate 3-D reconstruction under noise distribution by analyzing geometrically the 2D to 3D relationship. In situation for no missing feature points (FPs) or no noise in 2D image plane, the accurate solution of 3D shape reconstruction is blown to be provided by Singular Yalue Decomposition (SVD) factorization. However, if several FPs not been observed because of object occlusion and image low resolution, and so on, there is no simple solution. Moreover, the 3D shape reconstructed from noise-distributed FPs is peturbed because of the influence of the noise. This paper focuses on analysis of geometrical properties which can interpret the missing FPs even though the noise is distributed on other FPs.

Indoor object detection method using a RGBD image (RGBD 카메라를 이용한 실내에서의 물체 검출 알고리즘)

  • Heo, Seon;Lee, Sang Hwa;Kim, Myung Sik;Han, Seung Beom;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.100-103
    • /
    • 2015
  • 본 논문에서는 실내에서 RGBD 영상을 이용하여 물체를 검출하는 방법을 제안한다. 특정 물체가 아닌 일반적인 여러 가지 물체에 대한 특징을 규정하기 어려우므로 본 논문에서는 영상 정보에 의존하기 보다 물체와 픽셀의 기하학적 구조에 기반하여 물체를 검출한다. 우선 컬러 정보를 이용하여 대략적인 영상 영역분할을 하고 이를 같은 레이블로 분류하여 물체와 배경의 후보를 얻는다. 대체로 실내 환경에서 바닥은 평면이라 가정할 수 있으므로 바닥의 평면 모델을 만들어서 물체 후보에서 이를 제외시킨다. 또한, 물체에 대한 간단한 가정을 통해 바닥 이외의 배경 역시 물체와 구분하여서 물체 후보들을 가려낸다. 최종적으로 3 차원 공간에서 가까이 위치하는 레이블을 하나로 통합하는 과정을 통해 최종적인 물체 영역을 검출하고 이를 bounding box 로 표시한다. 직접 촬영한 몇몇 실내 RGBD 영상에서 실험한 결과, 제안하는 방법이 기존 방법들에 비해 물체 검출 성능이 좋은 것을 확인하였다.

  • PDF

Generation Method of 3D Human Body Level-of-Detail Model for Virtual Reality Device using Tomographic Image (가상현실 장비를 위한 단층 촬영 영상 기반 3차원 인체 상세단계 모델 생성 기법)

  • Wi, Woochan;Heo, Yeonjin;Lee, Seongjun;Kim, Jion;Shin, Byeong-Seok;Kwon, Koojoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.40-50
    • /
    • 2019
  • In recent years, it is important to visualize an accurate human body model for the low-end system in the medical imaging field where augmented reality technology and virtual reality technology are used. Decreasing the geometry of a model causes a difference from the original shape and considers the difference as an error. So, the error should be minimized while reducing geometry. In this study, the organ areas of a human body in the tomographic images such as CT or MRI is segmented and 3D geometric model is generated, thereby implementing the reconstruction method of multiple resolution level-of-detail model. In the experiment, a virtual reality platform was constructed to verify the shape of the reconstructed model, targeting the spine area. The 3D human body model and patient information can be verified using the virtual reality platform.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Research for Calibration and Correction of Multi-Spectral Aerial Photographing System(PKNU 3) (다중분광 항공촬영 시스템(PKNU 3) 검정 및 보정에 관한 연구)

  • Lee, Eun Kyung;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.143-154
    • /
    • 2004
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.

  • PDF

Development of Joint Survey System using Photogrammetric Technique (사진측량기법에 의한 절리조사 시스템 개발)

  • Son, Youngjin;Kim, Jaedong;Jeong, Wansoon;Kim, Jong-Hoon;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • In this study, a joint survey system was developed to efficiently analyze geometrical characteristics of joint structures in rock mass using photogrammetric technique. The system includes both hardware and software. The hardware consists of a high resolution image camera for photographing image of a surface of rock body, a direction controlling system for adjusting the attitude of camera, and a digital compass for measuring the rotation angle of camera. The software was also developed in order to analyze the orientation, density, mean length of joints revealed on the images of rock surfaces. The software developed in this study was named as JointeXtractor. As applying this system into several field measurements, the orientation, density, mean length of joints could be quantitatively measured through analyzing the images of rock surfaces, in which the case of a difficult-to-access area was especially included for the test of the system.

Image Registration by Optimization of Mutual Information (상호정보 최적화를 통한 영상정합)

  • Hong, Hel-Len;Kim, Myoung-Hee
    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.155-163
    • /
    • 2001
  • In this paper, we propose an image registration method by optimization of mutual information to provide a significant infonnation from multimodality images. The method applies mutual infonnation to measure the statistical dependency'r information redundancy between the image intensities of corresponding pixels in both images, which is assumed to be maximal if the images are geometrically aligned. We show the registration results optimizing mutual information between brain MR image and brain CT image and the comparison results with additive gaussian noise. Since our method uses the native image rather than prior segmentation or feature extraction, no user interaction is required and the accuracy of registration is improved. In addition, it shows the robustness against the noise.

  • PDF

Change Detection of a Small Town Area from Multi-Temporal Aerial Photos using Image Differencing and Image Ratio Techniques (다시기 항공사진으로부터 영상대차법과 영상대비법을 이용한 소도읍 지역의 변화 검출)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Lee, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.116-124
    • /
    • 2008
  • This study presents the application of multi-temporal and multi-scale panchromatic aerial photos for change detection in a small urban area. For aerial photos of the scale of 1:20,000 taken in 1987 and 1996 and the scale of 1:37,500 taken in 2000. Pre-processing that make the same conditions to all of the aerial photos was carried out through geometric correction, registration, contrasting, resamplimg, and mosaicking and then change detection were carried out respectively by image differencing and image ratio techniques. As a result, the change of urban features and landcover were able to be detected from panchromatic aerial photos that is single-band images and then the detected change results were compared between both techniques.

  • PDF