• Title/Summary/Keyword: 영구자석 선형 동기전동기

Search Result 117, Processing Time 0.027 seconds

Loss Minimizing Vector Control of Interior Permanent Magnet Synchronous Motor (영구자석 동기전동기의 최소 손실 벡터제어)

  • Chung, Euihoon;Lee, Yongjae;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.29-30
    • /
    • 2014
  • 전동기의 손실은 크게 동손과 철손으로 구분된다. 하지만 철손은 비선형적인 특성 때문에 제어에서 고려되지 않는 경우가 많았다. 본 논문에서는 동손뿐만 아니라 철손까지 제어에 반영하여 최소 손실로 구동하기 위하여 전동기의 철손을 모델링한다. 이때 구동조건에 따라 최소 손실 점을 실험적으로 측정하여 철손의 계수를 결정하였다. 구성된 손실 모델을 바탕으로 주어진 속도와 토크 조건에서 최적의 전류 지령을 생성하는 최소 손실 벡터제어 알고리즘을 소개하고, 실험을 통해 기존의 제어 방식과의 차이를 검증하여 효용성을 입증한다.

  • PDF

A Fault Diagnosis Technique of an Inverter-fed PMSM under Winding Shorted Turn and Inverter Switch Open Fault (권선 단락 및 스위치 개방 고장 시의 인버터 구동 영구자석 동기전동기의 고장 진단 기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.94-105
    • /
    • 2010
  • To detect faults in an inverter-fed permanent magnet synchronous motor (PMSM) drive under the circumstance having faults in a stator winding and inverter switch, an on-line basis fault detecting scheme during operation is presented. The proposed scheme is achieved by monitoring the second-order harmonic component in q-axis current and the fault is detected by comparing these components with those in normal conditions. The linear interpolation method is employed to determine the harmonic data in normal operating conditions. As soon as the fault is detected, the operating mode is changed to identify a fault type using the phase current waveform. To verify the effectiveness of the proposed fault detecting scheme, a test motor to allow inter-turn short in the stator winding has been built. The entire control algorithm is implemented using DSP TMS320F28335. Without requiring an additional hardware, the fault can be effectively detected by the proposed scheme during operation so long as the steady-state condition is satisfied.

A Fault Detecting Scheme for Short-Circuited Turn in a Permanent Magnet Synchronous Motor through a Current Harmonic Monitoring (전류 고조파 관찰을 통한 영구자석 동기전동기의 권선 단락 고장 진단 기법)

  • Kim, Kyeong-Hwa;Gu, Bon-Gwan;Jung, In-Soung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.167-178
    • /
    • 2010
  • To diagnose a stator winding fault caused by a short-circuited turn in a permanent magnet synchronous motor (PMSM), an on-line based fault detecting scheme during motor operation is presented. The proposed scheme is based on monitoring the second-order harmonic components in q-axis current obtained through the harmonic analysis and a winding fault is detected by comparing these components with those in normal conditions. The linear interpolation method is employed to determine harmonic data in arbitrary normal operating conditions. To verify the effectiveness of the proposed fault detecting scheme, a test motor to allow inter-turn short in the stator winding has been built. The entire control system including harmonic analysis algorithm and fault detecting algorithm is implemented using DSP TMS320F28335. The proposed scheme does not require any additional hardware and can effectively detect a fault during motor operation so long as the steady-state condition is satisfied.

Adaptive Chaos Control of Time-Varying Permanent-Magnet Synchronous Motors (시변 영구자석형 동기 전동기의 적응형 카오스 제어)

  • Jeong, Sang-Chul;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • Chaotic behavior in motor systems is undesired dynamics in real-time implementation since the speed is oscillated in a wide range and the torque is changed by a random manner. We present an adaptive control approach for time-varying permanent-magnet synchronous motors (PMSM) with chaotic phenomenon. We consider that its parameters are changed randomly within certain bounds. First, a nonlinear system model of a PMSM is transformed to derive a nominal linear control strategy. Then, an auxiliary control for compensating real-time control error occurred by system perturbation due to parameter change is designed by using Lyapunov stability theory. Numerical simulation is accomplished for evaluating its efficiency and reliability comparing with the traditional control method. Additionally, we test our control method in real-time motor experiment including a PSoC based drive system to demonstrate its practical applicability.

  • PDF

A Study on the Sliding Mode Control of PMLSM using the Slate Observer (상태관측기에 의한 영구자석 선형동기전동기의 슬라이딩모드제어에 관한 연구)

  • 황영민;신동률;최거승;조윤현;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • According to the rapid growth of high speed and precise industry, the application of synchronous motor has been increased. In the application fields, these fast dynamic response is of prime importance. In particular, since the PMLSM(Permanent Magnet Linear Synchronous Motor) has characteristics of high speed, high thrust, it has been used in high-performance servo drive. From these reasons, it is recently used for high precise position control, and machine tool. In this paper, a study of the sliding mode with VSS (Variable Structure System) design for a PMLSM is presented. For fast and precise motion control of PMLSM, the compensation of disturbance and parameter variation is necessary. Hence we eliminate the reaching phase use of VSS that is changed to switching function and vector control using the state observer. And we proposed to sliding mode control algorithm so that realize fast response without overshoot, disturbance and parameter variation.

The study of characteristics to thrust of double sided PMLSM apply to auxiliary teeth and offset (보조치 및 Offset 적용에 따른 양측식 PMLSM의 추력 특성 연구)

  • Kim, Sun-Jong;Jung, Sang-Yong;Kim, Yong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.837-838
    • /
    • 2015
  • 본 논문에서는 양측식 영구자석 선형 동기 전동기(Permanent Magnet Linear Synchronous Motor: 이하 PMLSM)의 전기자 분산배치를 위해 전기자에 보조치 및 Offset에 의해 나타나는 단부 코깅력을 해석하였다. 또한 가장 낮은 단부 코깅력을 가지는 Offset 위치에 대하여 역기전력을 분석하였으며 이에 따른 추력 특성에 대한 고찰을 수행하였다.

  • PDF

Design and Manufacture of Rotational round plate type PMLSM (회전원판형 영구자석 선형 동기 전동기의 설계 및 제작)

  • Jang, Seok-Myeong;Seo, Jung-Chul;Kwon, Jeong-Ki;Cho, Han-Wook;Choi, Jang-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.15-17
    • /
    • 2004
  • This paper deals with design and manufacture of rotational round plate type Permanent magnet linear synchronous motor. The magnetic flux density and thrust force characteristics is calculated by using analytical method and 2-D finite element analysis.

  • PDF

A Study on Detent Force Reduction of PMLSM Using FOC (FOC를 이용한 PMLSM의 디텐트력 저감에 관한 연구)

  • Jin, Sang-Min;Zhu, Yu-Wu;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.974-975
    • /
    • 2008
  • 영구자석 선형 동기 전동기(PMLSM)의 detent force는 입력전류가 가해지지 않은 상태에서의 영구자석과 철심간의 상호 작용에 의하여 발생된다. 이는 고정자에 관한 이동자의 위치 함수로서 표현 가능하다. 본 논문에서는 이동자의 위치에 따른 detent force를 측정하고, 이를 바탕으로 PMLSM 추력 리플의 원인이 되는 detent force를 저감하기 위한 보상법이 추가된 Field Oriented Control(FOC)을 제안하였다. 또한, 동일한 상황에서의 시뮬레이션 및 실험을 통해 제안된 제어법의 유효성을 입증하였다.

  • PDF

Improved Nonlinear Speed Control of PM Synchronous Motor using Time Delay Control (시간지연 제어를 이용한 영구자석형 동기전동기의 개선된 비선형 속도제어)

  • 백인철
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.299-304
    • /
    • 1998
  • An improved nonlinear speed control of a permanent magnet synchronous motor(PMSM) is presented. A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Using this model, to overcome the drawbacks of conventional nonlinear control scheme, the improved nonlinear control scheme that employs time delay control(TDC) is proposed. To show the validity of the proposed control scheme, simulation studies are carried out and compared with the conventional control scheme.

  • PDF

The Analysis of Skewed Armature Effect for Reduction of End Edge Cogging Force of Stationary Discontinuous Armature PMLSM (전기자 분산배치 PMLSM의 단부 코깅력 저감을 위한 전기자 스큐각의 영향 분석)

  • Kim, Yong-Jae;Kim, Jae-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.243-248
    • /
    • 2014
  • The permanent magnet linear synchronous motors facilitate maintenance, for it is structurally simple compare to rotating machine and has lots of advantage such as a precision control, high speed, high thrust and so on. However, it causes an increase of material cost because of structural characteristics that need to arranges the armature on the full length of transportation lines. Thus, in order to resolve this problem, we propose the discontinuous arrangement method of the armature but the edge always exists due to the structure when the armature is arranged discontinuously. Due to this edge, the cogging force is greatly generated and it causes thrust force ripple generating noise, vibration and decline of performance. Therefore, in this paper, we examined the characteristic of end edge according to the skew angle through 3-D numerical analysis using finite element method(FEM) and improved the operation characteristics.