• Title/Summary/Keyword: 염화암모늄

Search Result 74, Processing Time 0.034 seconds

A Study on the Thermochromic properties of Ti-doped Vanadium Dioxide (티타늄이 도핑된 이산화 바나듐의 열변색 특성에 관한 연구)

  • Park, Jin Wook;Park, Seong-Soo;Ahn, Byung Hyun;Hong, Seong-Soo;Lee, Gun Dae
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.235-240
    • /
    • 2015
  • In this study, vanadium dioxide was doped with titanium (0~0.5 at %) to improve thermochromic properties. The titanium doped vanadium dioxide (Ti-VO2) particles were prepared via thermolysis process using vanadyl sulfate, ammonium bicarbonate and titianium chloride as precursors. The crystal structure, morphology, chemical bonding and thermochromic properties were investigated by using XRD, FE-SEM, XPS, DSC and UV-Vis-NIR spectroscopy. It was found that titanium was successfully doped into the crystal lattice of VO2 and the obtained Ti-VO2 particles have monoclinic structure. With increasing Ti concentration, the particle size and phase transition temperature of Ti-VO2 particles decreased and NIR switching efficiency increased.

Humidity Sensitive Properties of Humidity Sensor using Quaternized Cross-linked Copolymers of Vinylbenzyl chloride (4차 염화 가교화된 Vinylbenzyl chloride 공중합체를 감습막으로 이용한 습도센서의 감습 특성)

  • Lee, Seong-Su;Gong, Myeong-Seon
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.825-830
    • /
    • 2000
  • The copolymers with various composition of vinylbenzyl chloride (VBC), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate(HEMA) were synthesized as a humidity sensitive material and quaternized with N, N, N', N'-tetraethylene diamine.. Resistance versus relative humidity decreased with increase in the content of MMA in the copolymer. The introduction of HPMA increased the resistance of the humidity sensor as well as enhanced the adherence to the alumina substrate. In the case of VBC/MMA/HEMA=80/10/10, the hysteresis and temperature dependency coefficient were $\pm$2%RH and -0.46~0.42%RH/$^{\circ}C$. The average resistance at 30%RH, 60%RH and 90%RH were 3.0M$\Omega$ ,200k$\Omega$ and 9k$\Omega$, respectively.

  • PDF

Preparation of Nano Size Cerium Oxide from Cerium Carbonate (탄산(炭酸)세륨으로부터 나노크기 산화(酸化)세륨 제조연구(製造硏究))

  • Kim, Sung-Don;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.24-29
    • /
    • 2009
  • Since cerium carbonate becomes porous cerium oxide by releasing carbon dioxide and vapour steam during calcination of cerium carbonate, nano size cerium oxide can be obtained by milling calcined cerium carbonate. Therefore cerium carbonate [$Ce_2(CO_3)3{\cdot}XH_2O$] is used generally for the preparation of nano size cerium oxide. In order to obtain nano size cerium oxide from cerium carbonate prepared by reactive crystallization of cerium chloride solution and ammonium bicarnonate solution, the effects of experimental variables in the milling and calcination of cerium carbonate, such as calcination temperature, milling time, rpm of planetary mill, amount of dispersant and ball size for milling on the size of cerium oxide was investigated in this study. Cerium oxide prepared with the conditions of calcination temperature of $700^{\circ}C$, milling time of 5 hour was 160nm mean particle size.

Efficacy of Sanitizers Due to the Changes of Contact Time and Temperature (사용시간 및 온도조건 변화에 따른 살균소독제의 유효성)

  • Kim, Hyung-Il;Park, Sung-Kwan;Kwak, In-Shin;Sung, Jun-Hyun;Lim, Ho-Soo;Kim, Hoo-Jung;Kim, So-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.325-332
    • /
    • 2010
  • The bactericidal efficacy of three common sanitizers (100 or 200 ppm of sodium hypochlorite, 100 or 200 ppm of n-alkyl($C_{12}-C_{18}$)benzyldimethyl ehloride, and 50 or 100 ppm of peroxyacetie acid) against Escherichia coli ATCC 10536 and Staphylococcus aureus ATCC 6538 was studied using the suspension test method at various exposure temperatures (4~$40^{\circ}C$) and times(1~60min) under both dirty and clean conditions, respectively. During the suspension tests, sodium hypochlorite (200 ppm) showed higher bactericidal activity than the other sanitizers under clean conditions, with 5 log reductions against E. coli as well as S. aureus in the first 1 min of treatments at $4^{\circ}C$, However, the efficacy of sodium hypochlorite decreased markedly under dirty conditions due to its susceptibility to interfering substances. The efficacy of the n-alkyl($C_{12}-C_{18}$)benzyldimethyl chloride increased considerable as the exposure temperature and time increased. The bactericidal efficacy of the n-alkyl($C_{12}-C_{18}$)benzyldimethyl chloride might be less effective on low temperature, however, the longer time the sanitizer is in contact, the more effective the sanitization effect. Treatment with peroxyacetic acid (100 ppm) showed at least 5 log reduction against E. coli and S. aureus for 5 min at $4^{\circ}C$ under both clean and dirty conditions. The efficacy of the peroxyacetic acid was not much altered by interfering substances and aflected by changes in temperature or time.

Separation of Vanadium and Tungsten from Spent SCR DeNOX Catalyst by Ion-exchange Column (SCR 탈질 폐촉매로부터 이온교환칼럼을 이용한 바나듐과 텅스텐의 분리)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Rina;Kim, Chul-Joo;Chung, Kyeong Woo;Jeon, Ho-Seok;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.54-63
    • /
    • 2021
  • Vanadium and tungsten can be obtained by separating/recovering the leaching solution from a spent SCR DeNOX catalyst using the soda roasting-water leaching process. Therefore, in this study, the adsorption/desorption mechanism of vanadium and tungsten in an ion-exchange column was investigated using Lewatit MonoPlus MP 600, a strong basic anion exchange resin. The operating conditions for the separation of vanadium and tungsten in the ion-exchange column was intended to present. By conducting a continuous adsorption experiment in a pH 8.5 solution, the adsorption capacity of vanadium and tungsten was found to be 44.75 and 64.92 mg/(g of resin), respectively, which showed that the adsorption capacity of tungsten was larger than that of vanadium because of the difference in ion charge. Vanadium has a higher affinity for MP 600 than tungsten. Consequently, as the vanadium-containing solution is eluted through the ion exchange resin onto which tungsten is adsorbed, the adsorbed tungsten is exchanged with vanadium and desorbed. A continuous experiment was performed with a solution of vanadium and tungsten prepared at the same concentration as the spent SCR DeNOX catalyst leachate. The adsorption capacity of vanadium was found to be 48.72 mg/(g of resin) and 80% of the supplied vanadium was adsorbed; in contrast, almost no tungsten was adsorbed. Therefore, vanadium and tungsten were separated effectively. The ion exchange resin was treated with 2 M HCl at 15 mL/h, and 97.7% of the vanadium(99% purity) could be desorbed. After desorption, NH4Cl was added to precipitate ammonium polyvanadate at 90℃ and recover 93% of the vanadium.

Review of Copper Trihydroxychloride, a Green Pigment Composed of Copper and Chlorine (구리와 염소 주성분 녹색 안료 코퍼 트리하이드록시클로라이드(Copper Trihydroxychloride)에 대한 고찰)

  • Oh, Joonsuk;Lee, Saerom;Hwang, Minyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.64-87
    • /
    • 2020
  • Copper trihydroxychloride (atacamite, botallackite, paratacamite, etc.), the first green pigment used in Mogao Grotto's mural paintings of China, has been known as "copper green", "green salt", and "salt green", etc. and has been used as an important green pigment with malachite. At first, the natural mineral atacamite was employed, but after the Five Dynasties (907~960 CE), synthetic copper trihydroxychloride was primarily used. In Chinese literature, copper green, green salt, and salt green are recorded as being made via reaction with copper powder, Gwangmyeongyeom (natural sodium chloride), and Yosa (natural ammonium chloride), and the prepared material was analyzed to be copper trihydroxychloride. Copper trihydroxychloride pigment was not found in paintings prior to the Joseon Dynasty (1392~1910 CE) in Korea. In analysis of the green pigments used in paintings and the architectural paintworks in the Joseon Dynasty, copper trihydroxychloride was also shown to have been used as an important green pigment with malachite (Seokrok). In particular, the proportion of copper trihydroxychloride use was high in Buddhist paintings, shamanic paintings, and dancheongs (decorative coloring on wooden buildings). Some of these turned out to be synthetic copper trihydroxychloride, but it is unclear whether the rest of them are synthetic or natural pigments due to a lack of analyzed data. From literature and painting analyses, the pigment name of copper trihydroxychloride in the Joseon Dynasty turns out to be Hayeob, a dark green pigment. It is believed to have first been prepared by learning from China in the early Joseon period (early 15th century) and its use continued until the late 19th century with imported Chinese pigment. Round or oval particles with a dark core of copper trihydroxychloride which were used in Chinese literature were similar to the synthetic copper trihydroxychloride pigments used in the Joseon Dynasty and Chinese paintings. Therefore, the synthetic copper trihydroxychloride pigments of Korea and China are believed to have been prepared in a similar way.

Production of Fungal Lipids (Part 2) Isolation of Starch Utilizing Mold and Its Optimum Compositions of Growth Media (곰팡이 유지 생산에 관한 연구 (제 2 보) 전분 이용성 곰팡이의 분리 및 배지조성에 관하여)

  • 신동화;김창식
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.1
    • /
    • pp.15-26
    • /
    • 1982
  • A potential fungal lipid producer from starch, which was identified as Muror plumbeus, was isolated from natural sources and its optimum cultivation condition for lipid production was investigated. The Mucor plumbeus FRI 0007 showed the highest felt weight and lipid content which were 2.09 $\pm$ 0.24g per 50$m\ell$ of medium and 37.43% on dry weight basis respectively after 20 days incubation on the medium containing 21% of starch as a carbon source. The urea was the best nitrogen source as compared with sodium nitrate, potassium nitrate, magnesium nitrate, ammonium nitrate and ammonium acetate and its optimum concentration was 2.14g/$\ell$, showing 2.39 $\pm$ 0.07 g felt/50$m\ell$ of medium and 50.73% lipid content on dry weight basis after 25 days incubation. Besides the starch as a carbon source and urea as a nitrogen source, the Mucor plumbeus FRI 0007 utilized ZnSO$_4$, MgSO$_4$, NaH$_2$PO$_4$, $K_2$SO$_4$and FeCl$_3$as mineral sources. However, it did not require ail the above 5 minerals in group in-dispensably for its growth and lipid accumulation. The lipid and economic coefficient of Mucor plumbeus FRI 0007 grown on the medium containing 0.44g $K_2$SO$_4$or 5.00g MgSO$_4$/$\ell$solely were 14.96 and 15.37 and 31.12 and 26.10 which was higher than those on the medium containing the above 5 minerals.

  • PDF

Physicochemical Properties of Organo­Smectites Modified by HDTMA, BDTDA, and CP (HDTMA­, BDTDA­ 및 CP­스멕타이트의 물리­화학적 특성)

  • 고상모;홍석정;송민섭
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.295-305
    • /
    • 2003
  • This study aims to provide the physicochemical properties of three kinds of organo­smectites which can be diversely used in industries. Some properties of them were compared with Na­smectite. Three kinds of organo­smectites such as Hexadecyltrimethylammonium(HDTMA), Benzyldimethyltetradecylammonium(BDTDA), and Cetylpyridinium(CP) exchanged smectites were manufactured for this study. Three types of organo­smectites showed the alkaline character(pH 9), very low swelling property and viscosity, and a fast flocculation behavior because of strong hydrophobic property in contrast to hydrophilic Na­smectite. Three organo­smectites showed the strong interlayer expansion with basal spacing from $19\AA$ to $23\AA$ compared with the Na­smectite of about 12 $\AA$. Organic cations such as HDTMA, BDTDA, and CP exchanged into smectite were completely decomposed in the temperature range from $250^{\circ}C$ to $400^{\circ}C$. Generally, three organo­smectites showed the similar mineralogical, physicochemical and thermal properties. But their properties are quite different from Na­smectite. Considering economically, CP exchanged smectite would be used for the diverse utilization field in the future time.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.