• Title/Summary/Keyword: 염색성 변화

Search Result 449, Processing Time 0.034 seconds

Stratum Corneum Exfoliation Effect with Hydroxy Acid according pH (pH에 따른 하이드록시 산(Hydroxy Acid)의 각질 박리 효과 연구)

  • Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.413-420
    • /
    • 2016
  • Hydroxy acid has been used to enhance anti-aging and skin moisturization by peeling effect on the skin stratum corneum, and thus it has been widely used in topical products and cosmetic products. Among them, the effect that appears most effectively in a short period of time has been reported to be effected by the pH of the cosmetic formulations. However, there are many difficulties in use due to irritation caused by pH and concerns about side effects. The purpose of this study was to evaluate the effect of applying cosmetics with (1) varying concentrations, (2) types and (3) pH of hydroxy acid on human skin. 22 healthy adults were stained with DHA (dihydroxyacetone) and DC (dansyl chloride) on the forearm, and the skin exfoliation effect was measured after application of the test products. (1) The application of GA (glycolic acid) increased the desquamation by concentration dependent. (2) the test product prepared with neutral pH showed no exfoliation effect. In contrast, SA (salicylic acid) showed a statistically significant exfoliation effect at both acidic pH and neutral pH. (3) The neutral pH SA showed excellent exfoliation effect on bot DHA and DC stained stratum corneum. These results suggest that it is possible to manufacture safe cosmetics without damaging the skin barrier, providing an opportunity to use cosmetics that are expected to exfoliate to people, whose skin is sensitive to pH.

Analysis of Chromosome aberrations by fluorescence in situ hybridization using triple chromosome-specific probes in human lymphocyte exposed to radiation (3중 DNA probe를 이용한 FISH(fluorescence in situ hybridization) 기법으로 방사선에 의한 염색체 이상 분석)

  • Chung, Hai-Won;Kim, Su-Young;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 1999
  • Fluorescence in situ hybridization with chromosome-specific probe has been shown to be a valid and rapid method for detection of chromosome rearrangements induced by radiation. This method is useful for quantifying structural aberrations, expecially for stable ones, such as translocation and insertion, which are difficult to detect with conventional method in human lymphocyte. In order to apply FISH method for high dose biological dosimetry, chromosomal abberations by radiation at doses of 1, 3, 5, and 7Gy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. The frequencies of stable translocation per cell equivalent were 0.04, 0.33, 1.22, 2.62, and 5.58 for the lymphocyte exposed to 0, 1, 3, 5, and 7Gy, respectively, and those of dicentric were 0.00, 0.06, 0.52, 1.19 and 2.44, respectively. Significantly more translocation of t(Ab), a translocated chromosome with a piece of painted acentric matrial 'b' attached to unpainted piece containing centromere 'A', than reciprocal chromosome t(Ba) was observed. The frequencies of all type of chromosome rearrangements increased with dose. From above result, FISH seemed to be useful for radiation biodosimetry by which the frequencies of various types of stable aberrations in human lymphocyte can be observed more easily than by conventional method and so will improve our ability to perform meaningful biodosimetry.

  • PDF

Zinc-enriched (ZEN) Terminals in Onuf's Nucleus Innervating External Urethral Sphincter: HRP Tracing Method and Zinc Selenium Autometallography (바깥요도조임근을 지배하는 Onuf 핵에서 관찰된 Zinc 함유 신경종말: HRP 추적법 및 zinc selenium 조직화학법)

  • Lee, Bo-Ye;Kim, Yi-Suk;Lee, Boeb-Y.;Lee, Hyun-Sook;Tak, Gye-Rae;Lee, Young-Il;Lee, Jeoug-Yeol;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2006
  • Onuf's nucleus, which is located in the ventral horn, has been known to innervate the striated muscles of the urethral and anal sphincter muscles via the pudendal nerve Onuf's nuclei are resistant to pathologic condition such as poliovirus. The reason why the motor neurons in Onuf's nucleus are less degenerated is not certain until now. The present study aims at updating the microscopical characteristics including its location the Onuf's nucleus innervating the external urethral sphincter, and ultrastructures of the zinc-enriched (ZEN) terminals synaptically-contacting with Onuf's motor neurons in the rat spinal gray matter by using HRP tracing method and zinc selenium autometallography, respectively. Based on HRP tracing method, Onuf's nuclei were located adjacent lateral dendritic projections of the ventral horn. Their shape was almost round at lumbar level, but oval at sacral segment of spinal cord. In size, their somata were smaller than that of other motor nuclei. In AMG stained sections, Onuf's nuclei were innervated by highly concentrated ZEN terminals, and contained small and middle-sized ZEN, but totally void of large ZEN terminals. AMG silver grains were confined to presynaptic ZEN terminals against dendritic elements and somata of the Onuf's motor neurons. A majority of the ZEN terminals contained flattened synaptic vesicles and made symmetrical synaptic specializations.

Detection of the Factors Related to spermatization in Sclerotinia trifoliorum -I. Course of Fertilization (Sclerotinia trifoliorum의 Spermatization에 관여하는 요인(要因)의 검색(檢索) -I. 균(菌)의 수정과정(受精過程))

  • Uhm, Jae Youl;Kim, Young Tae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.127-133
    • /
    • 1987
  • The process of fertilization and changes in anatomical structure of sclerotia during the apothecial formation in Sclerotinia trifoliorum, the causal fungus of sclerotial rot of forage legumes, were investigated. The time of fertilization could be estimated with fair accuracy by the sequencial spermatization of the sclerotia which kept at 15C in saturated moisture. In the case of one strain used in this experiment, fertilization between the sclerotia and spermatia were estimated to take place at around 18days after the sclerotia were placed under the conditions for apothecial induction (15C, saturated moisture). The fertilizable state was maintained for about 45 days and the spermatization thereafter did not induce the apothecial formation. When the sclerotia reached fertilizable state, a number of interwoven hyphal nests were developed within the medulla of sclerotia, regardless of the sexuality of the cultures. Comparing the process of multiplication and growth of the hyphal nests in homothallic and heterothallic culture, they were identified as ascogonium. These ascogonia were persisted for about 45 days. This observation was well coincided with the duration of fertilizable state elucidated by the sequencial spermatization experiment.

  • PDF

Wound Healing Effect of Low Molecular PDRN on Experimental Surgical Excision Rat Model (저분자화된 Polydeoxynucleotide (PDRN)의 흰쥐에 대한 외과적 창상 치유 효과)

  • Yun, Jong-Kuk;Yoon, Hye-Eun;Park, Jeong-Kyu;Kim, Mi Ryeo;Kim, Dae-Ik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.401-411
    • /
    • 2015
  • This study was performed to investigate the wound healing effect of skin regeneration cosmetics utilizing low molecular weight Polydeoxynucleotide (PDRN). High purity PDRN was prepared from salmon testes poly-deoxy-ribonucleotide through protein and toxin removal process and molecular weight reduction. In order to evaluate the wound healing effect of PDRN in SD rats, 4 sites of dorsal skin of each animal were excised by using biopsy punch and $500{\mu}L$ of test solution was topically applied once daily for 4 weeks. The tissue changes were observed for every week during the application periods. After applying the PDRN to the wound, the skin was cut flower and contraction of the wounds more quickly, and the coating of PDRN in the wound area was reduced significantly as compared to the positive control group $Fucidin^{(R)}$ applied. The microscopic observation of stained tissue showed that a positive control was most rapid in re-epithelialization ability followed by the PH group, PDRN group, HA group. In addition, transforming growth factor ($TGF-{\beta}$) and vascular endothelial growth factor (VEGF), such as in the growth factor was similar to the results of staining of tissue lesions. In conclusion, it is determined that the low molecular weight PDRN has the therapeutic effect to the wound, and could be used as a functional material of cosmetics and medical industries.

Cytological Study on the Cause of the Osteoporotic Side Effects of Adefovir Dipivoxil (아데포비어의 부작용인 골다공증 원인 규명을 위한 세포학적 연구)

  • Park, Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.379-385
    • /
    • 2019
  • Osteoporosis is a disease that increases the risk of fractures by inducing a decrease in bone strength by the changes in hormones and a decrease in minerals. Recent reports have indicated that the long-term administration of Adefovir dipivoxil (ADV), which is used as a treatment for the hepatitis virus and AIDS, may have osteoporotic side effects. On the other hand, there are few studies on the cytopathic correlation of these causes. In this study, the biological relevance of ADV was evaluated using osteoblast hFOB1.19 and vascular endothelial cell HUVEC. First, the cells were treated with ADV at different concentrations, and DAPI and crystal violet staining were performed for morphological analysis of each cell and nucleus. A CCK-8 assay, real-time PCR, alkaline phosphatase (ALP) staining, and activity was performed to evaluate the drug effects on cell proliferation, gene expression, and osteoblast differentiation. As a result, ADV induced cell hypertrophy in hFOB1.19 cells and HUVEC cells. Furthermore, ADV not only inhibited cell proliferation and TGF-${\beta}$ expression but was also involved in osteoblast differentiation. Overall, these results provide basic data to help better understand the mechanism of ADV-induced osteoporosis and its clinical implications.

Immunohistochemical Localization of NMDA Receptor in the Auditory Brain Stem of Postnatal 7, 16 Circling Mouse (생후 7일, 16일된 circling mouse 청각 뇌줄기에서 N-메틸-D 아스파르트산염 수용체(NMDA receptor)에 대한 면역염색학적 분포)

  • Choi, In-Young;Park, Ki-Sup;Kim, Hye-Jin;Maskey, Dhiraj;Kim, Myeung-Ju
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.53-64
    • /
    • 2010
  • Glutamate receptors may play a critical role in the refinement of developing synapses. The lateral superior olivary nucleus (LSO)-medial nucleus of trapezoid body (MNTB) synaptic transmission in the mammalian auditory brain stem mediate many excitatory transmitters such as glutamate, which is a useful model to study excitatory synaptic development. Hearing deficits are often accompanied by changes in the synaptic organization such as excitatory or inhibitory circuits as well as anatomical changes. Owing to this, circling mouse whose cochlea degenerates spontaneously after birth, is an excellent animal model to study deafness pathophysiology. However, little is known about the development regulation of the subunits composing these receptors in circling mouse. Thus, we used immunohistochemical method to compare the N-Methyl-D-aspartate receptor (NMDA receptor) NR1, NR2A, NR2B distribution in the LSO which project glutamergic excitatory input into the auditory brainstem, in circling mouse of postnatal (p) 7 and 16, which have spontaneous mutation in the inner ear, with wild-type mouse. The relative NMDAR1 immunoreactive density of the LSO in circling mouse p7 was $128.67\pm8.87$ in wild-type, $111.06\pm8.04$ in heterozygote, and $108.09\pm5.94$ in homozygote. The density of p16 circling mouse was $43.83\pm10.49$ in wild-type, $40\pm13.88$ in heterozygote, and $55.96\pm17.35$ in homozygote. The relative NMDAR2A immunoreactive density of LSO in circling mouse p7 was $97.97\pm9.71$ in wild-type, $102.87\pm9.30$ in heterozygote, and $106.85\pm5.79$ in homozygote. The density of LSO in p16 circling was $47.4\pm20.6$ in wild-type, $43.9\pm17.5$ in heterozygote, and $49.2\pm20.1$ in homozygote. The relative NMDAR2B immunoreactive density of LSO in circling mouse p7 was $109.04\pm6.77$ in wild-type, $106.43\pm10.24$ in heterozygote, and $105.98\pm4.10$ in homozygote. the density of LSO in p16 circling mouse was $101.47\pm11.5$ in wild-type, $91.47\pm14.81$ in heterozygote, and $93.93\pm15.71$ in homozygote. These results reveal alteration of NMDAR immunoreactivity in LSO of p7 and p16 circling mouse. The results of the present study are likely to be relevant to understand the central change underlying human hereditary deafness.

The Effects of Cyclooxygenase-2(COX-2) Inhibitor on COX-2 and Prostaglandin E2 Expression in Ovalbumin Induced Early Phase Bronchoconstriction of Rats (Ovalbumin으로 유발된 백서의 즉시형 기관지 수축 반응에서 Cyclooxygenase-2(COX-2) 발현 양상 및 혈중 프로스타글란딘 E2 농도와 COX-2 억제제의 효과)

  • Lee, Sung-Yong;Lee, Sin-Hyung;Jung, Ki-Hwan;Kim, Byung-Gyu;Jung, Hae-Chul;Kim, Kyung-Kyu;Kwon, Young-Hwan;Kim, Ja-Hyeong;Lee, Ju-Han;Lee, Sang-Youb;Cho, Jae-Yoen;Shim, Jae-Joeng;In, Kwang-Ho;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.2
    • /
    • pp.191-202
    • /
    • 2000
  • Background: Bronchial asthma is characterized by airway hyperresponsiveness(BHR) and inflammation. The cyclooxygenase(COX) is believed to be one of the important enzymes in these inflammatory reactions. Recently, the COX was divided into two isoforms, COX1 and COX2. COX2 is induced by lipopolysaccharide and some cytokines at the inflammation site. Prostaglandin E2(PGE2), produced from COX2, may affect airway inflammation. The purpose of this study is to evaluate the effect of COX2 inhibitor on COX2 expression, plasma PGE2, airway resistance and histologic finding in an animal asthma model. Methods : Sprague-Dawley rats were divided into 3 groups. The normal control group did not receive any treatment, but the asthma control group was sensitized by ovalbumin but not treated with the COX2 inhibitor(nimesulide, Mesulid$^{(R)}$). The treatment group was sensitized and treated with nimesulide. Specific airway resistance(sRaw) before and after nimesulide ingestion was investigated. The PGE2 level in the plasma was examined and COX2 immunogold-silver stain on lung tissue was performed. Results: sRaw and eosionophilic infiltration on airway, which increased in the asthma control group, was compared to normal control(p=0.014). However, there was no difference in eosinophilic infiltration between asthma control and treatment groups(p=0.408) and no difference in COX2 expression on bronchiolar epithelium among the three groups. Plasma PGE2 levels were not statically different among the three groups. Conclusion: The role of COX2 in the allergen-induced BHR was not significant The effect of nimesulide was not observed on BHR, COX2 expression, and plasma PGE2 level. Therefore, COX2 may not be a major substance of allergic asthma.

  • PDF

Changes of CGRP immunoreactivity in rat trigeminal ganglion neurons during tooth movement (백서 삼차신경절내 신경세포체의 치아이동에 따른 CGRP 면역염색성의 변화)

  • Park, Chyo-Sang;Park, Guk-Phil;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.27 no.4 s.63
    • /
    • pp.607-621
    • /
    • 1997
  • GRP was known as the modulator of Pain transmission in central nervous system and local effector to peripheral tissue causing vasodilation, increased blood flow, modulation of immune sysem, stimulation of endothelial cell proliferation, and stimulation of bone formation. Numerous study, therefore, were done to elucidate involvement of CGRP to tooth movement. To investgate the response of CGRP immunoreactive nerve cells according to cell size in trigeminal ganglion during tooth movement, immunohistochemical study was performed using rat. Experimental rats(9 weeks old, 210 gm) were divided as six groups(normal(n=6), 3 hour group(n=5), 12 hour group(n=4), 1 day group(n=5), 3 day group(n=5), 7 day group(n=5)), and were applied orthodontic force (approximately 30 gm) to upper right maxillary molar. After frozen sections of trigeminal ganglions were immunostained using rabbit antisera, the changes of CGRP immunoreactive cells in regard to cell size distribution(small cell(upto $20{\mu}m$), medium cell($20-35{\mu}m$), large cell(above $35{\mu}m$)) were observed. The results were as follows 1. The percentage of CGRP immunoreactive cells to all nerve cells in trigeminal ganglion was 33.0% in normal control group, was decreased to 24.5% in 1 day group, and was increased to 41.8% in 7 day group. 2. The percentage of small, medium, and large cells expressing CGRP immunoreactivity in normal trigeminal ganglion to all CGRP immunoreactive cells were 51.3%, 44.0%, 4.7%, respectively. 3. The percentage of small cells with CGRP immunoreactivity to all CGRP immunopositive cells was increased in 3 hour and 12 hour groups. 4. The percentage of medium cells with CGRP immunoreactivity was increaed in 3 day and 7 day groups. 5. The percentage of large cells with CGRP immunoreactivity was increaed in 7 day group. Conclusively, the small cells with CGRP immunoreactivity in trigeminal ganglion respond to orthodontic force during initial phase of tooth movement, and later the medium and large cells with CGRP immunoreactivity respond

  • PDF

Roles of Local Estrogen and Progesterone Mediated Receptors in the Regulation of Endometrial Inflammation (자궁내막 염증에 대한 지엽적 에스트로겐 및 프로게스테론 매개 수용체의 역할)

  • Gyesik Min
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.102-113
    • /
    • 2023
  • This review discusses the cellular and molecular mechanisms by which the endometrial estrogen and progesterone receptors regulate local estrogen production, expression of the specific estrogen receptors, progesterone resistance, inflammatory responses and the differentiation and survival of endometriotic cells in endometrial inflammation. The epigenetic aberrations of endometrial stromal cells play an important role in the pathogenesis and progression of endometriosis. In particular, differential methylation of the estrogen receptor genes changes in the stromal cells the dominancy of estrogen receptor from ERα into ERβ, and results in the abnormal estrogen responses including inflammation, progesterone resistance and the disturbance of retinoid synthesis. These stromal cells also stimulate local estrogen production in response to PGE2 and the SF-1 mediated induction of steroidogenic enzyme expression, and the increased estradiol then feeds back into the ERβ to repeat the vicious inflammatory cycle through the activation of COX-2. In addition, high levels of ERβ expression may also change the chromatin structure of endometrial mesenchymal stem cells, and together with the repeated menstrual cycles can induce formation of the endometriotic tissue. The cascade of these serial events then leads to cell adhesion, angiogenesis and survival of the differentiation-disregulated stromal cells through the action of inflammatory factors such as ERβ-mediated estrogen, TNF-α and TGF-β1. Therefore, understanding of the dynamic hormonal changes during the menstrual cycle and the corresponding signal transduction mechanisms of the related nuclear receptors in endometrium would provide new insights for treating inflammatory diseases such as the endometriosis.