• 제목/요약/키워드: 염배소

검색결과 16건 처리시간 0.022초

국내부존 VTM으로부터 바나듐 회수를 위한 황화배소 공정의 열역학적 평가 (Thermodynamic Evaluation of Sulfate-Roasting Process for the Vanadium Extraction from Korean VTM Ore)

  • 김영재;최경섭;박현식;정경우
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.49-55
    • /
    • 2022
  • 본 연구에서는 국내 부존 바나듐 광물인 포천 지역의 바나듐 함유 함티탄철석(VTM: Vanadium-bearing titaniferous magnetite)을 대상으로 하여, 바나듐 회수를 위한 황화 배소 반응의 열역학적 평가를 수행하였다. Na2SO4를 이용하여 황화 배소를 진행하는 경우, 배소조건에 따른 배소 후 바나듐 및 불순물의 수침출 거동을 평가하고, 황화 배소 반응에 대한 메커니즘 규명을 위하여 열역학적 평가를 수행하였다. Na2SO4를 이용한 황화 배소의 경우 Na2CO3를 이용한 염배소 공정과 비교하여 반응 온도는 200 ℃ 정도 높았지만 바나듐 침출률이 높고 Al, Si 등의 불순물에 대한 낮은 침출률을 보였다. 바나듐만 선택적으로 수침출되는 황화 배소 반응의 특징은 기상의 SO2 가스와 정광내 바나듐간의 반응에 따른 반응 메커니즘에 기인하는 것으로 예상되었다.

바나듐의 고효율 회수를 위한 배소 전처리용 Rotary kiln 내 열화학적 모델인자 (Thermochemical Modeling Factors in Roasting Pre-treatment using a Rotary Kiln for Efficient Vanadium Recovery)

  • 이상훈;정경우
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.33-39
    • /
    • 2022
  • 본 연구에서는 Rotary kiln(RK)을 이용하여 바나듐 염배소 전처리시 적정온도를 유지하기 위한 열화학적 모델링 관련 인자에 대해 논의하였다. 관련 모델 메카니즘은 열화학 관련 반응속도모델, 열수지 및 열전달 등이며 이를 통해 rotary kiln내 온도분포를 직관적으로 추정할 수 있다. 이러한 작업을 통해 최적 염배소 온도인 1000 ℃(또는 약 1273 K) 근방을 kiln내에서 장기간 유지하는 것이 관건이다. 본 연구에서는 탄화수소(천연가스) 연료연소 및 광석 산화반응으로부터의 발열과 광석으로의 복사열전달 등을 산정하였다. 또한 열화학 측면에서 Rotary kiln내 적정 배소온도구역에서의 온도구배 완화를 위한 방안을 제시하였다.

국내산 함바나듐 티탄자철광으로부터 CaO 배소를 통한 바나듐 침출거동 (Vanadium Leaching Behavior from Domestic Vanadium Bearing Titanomagnetite Ore through CaO Roasting)

  • 신동주;주성호;이동석;전호석;신선명
    • 자원리싸이클링
    • /
    • 제30권4호
    • /
    • pp.27-34
    • /
    • 2021
  • 본 연구에서는 국내산 함바나듐 티탄자철광으로부터 CaO 염배소 및 황산 침출을 통해 바나듐의 침출거동에 대해 고찰하였다. CaO의 첨가량 및 배소 온도에 따라 상의 변화를 살펴보았다. 배소 조건에 관계없이 Perovskite (CaTiO3)가 형성되었으며, CaO 함량이 높아지면 Calcium ferrite (CaFeOx) 상이 CaO 함량이 낮아지면 Hematite (Fe2O3)가 형성이 되었다. CaO 배소 후 1M 황산, 50℃, 고액비 10%에서 6시간 동안 침출을 진행하였다. 침출 결과 배소 시료의 형태가 소결일 경우 바나듐의 산화가 충분히 이루어지지 못해 침출률이 감소하였다. 또한 배소 온도가 낮으면 미 반응한 잔류 CaO의 영향으로 바나듐의 침출률이 감소하였다. 함바나듐 티탄자철광의 철과 티타늄의 침출률을 낮추기 위해서는 CaO의 첨가량을 최소화하여 CaTiO3와 CaFeOx의 형성을 억제할 필요가 있었다. 결과적으로 1150℃, 10 wt.% CaO 배소 산물을 침출하였을 때 86%의 바나듐, 4.3%의 철, 6.5%의 티타늄의 침출률을 얻을 수 있었다.

VTM 정광 염배소 산물에 대한 바나듐 수침출 거동 분석 및 고농도 바나듐 용액 제조 (The Water Leaching Behavior of Vanadium from a Salt-roasted VTM Concentrate and the Preparation of High-concentration Vanadium Solution)

  • 박유진;김리나;김민석;전호석;정경우
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.56-62
    • /
    • 2022
  • 본 연구에서는 탄산나트륨(Na2CO3)을 사용하여 염배소한 함바나듐 티탄철광(VTM)으로부터 바나듐의 수침출 거동을 고찰하였다. 자력선별 된 정광과 Na2CO3를 질량비 4:1로 혼합한 후 1050 ℃, 3시간 조건에서 염배소하고 로드밀을 사용해 D50=48.79 ㎛로 분쇄하여 연구에 사용하였으며 침출 온도와 광액 농도를 수침출 영향인자로 선정하였다. 연구 결과, 온도가 25, 55, 85 ℃로 증가할수록 바나듐의 침출율은 90.4, 88.2, 83.8%로 감소하였으며 광액 농도 10, 50, 100 w/v%에 따른 바나듐 침출율은 각각 90.4, 87.0, 87.0%로 변화가 크지 않았다. 이를 바탕으로 25 ℃, 100 w/v%, 300 rpm, 1시간의 조건에서 다단 침출을 수행한 결과, 총 4단 침출 후 최종 침출액의 바나듐 농도는 16.20 g/L로 분석되었다. 따라서 다단 침출을 통해 고농도 소듐바나데이트 용액의 제조가 가능하였다.

Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구 (A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process)

  • 주성호;신동주;이동석;신선명
    • 자원리싸이클링
    • /
    • 제32권1호
    • /
    • pp.42-49
    • /
    • 2023
  • Li-Al-Si를 함유한 유리세라믹 순환자원은 인덕션, 방화유리, 비젼냄비 등 리튬의 전체 소비량 중 14%로 리튬이온전지 다음으로 많이 쓰인다. 따라서 리튬의 수요가 폭발하고 있는 현재 새로운 리튬 자원을 찾아야 하고 이로부터 리튬의 회수 연구가 필요하다. 본 연구는 이러한 맥락하에 Li을 함유한 새로운 순환자원인 Li-Al-Si 유리세라믹으로부터 리튬을 회수하기 위한 연구를 수행하였다. 본 연구에서는 1.5% Li, 9.4% Al, 28.9% Si를 함유한 Li-Al-Si 유리세라믹 중 방화유리를 원료물질로 사용하였다. 방화유리로부터 리튬을 회수하기 위한 공정은 크게 칼슘 염을 투입한 건식 배소 공정과 수침출 공정으로 나뉜다. 325 mesh 이하로 분쇄된 방화유리 시료를 열처리 전과 열처리 후 칼슘 염을 투입하여 침출 실험을 비교 진행하였고 칼슘 염과 Li-Al-Si 유리세라의 투입비율에 따른 침출율, 칼슘 염 배소 온도에 따른 침출 연구도 비교 수행하였다. 수침출 연구에서는 온도, 시간, 고액비, 그리고 연속 침출횟수에 따라 리튬의 침출율 및 회수율을 비교하였다. 그 결과 Li-Al-Si를 함유한 유리세라믹 방화유리는 열처리를 반드시 수행하여 베타 형태의 스포듀민으로 상변화 시켜야 하며 이로부터 CaCO3 염을 Li-Al-Si를 함유한 유리세라믹 방화유리와 6:1의 비율로 투입하여 1000℃이상에서 배소한 후 4회 이상 연속 침출하여 리튬의 회수율을 98% 이상 획득하였고 이때 리튬의 농도는 200mg/L였다.

국내 석유공장의 탈황 폐촉매로부터 유가금속의 회수에 관한 연구 (Recovery of Valuable Metals from the Desulfurizing Spent Catalyst Used in Domestic Petrochemical Industry)

  • 김종화;양종규
    • 자원리싸이클링
    • /
    • 제4권3호
    • /
    • pp.2-9
    • /
    • 1995
  • 탈황 폐촉매 중에 함유되어 있는 Ni, V 및 Mo을 배소, 암모니아 침출 및 용매추출법을 이용하여 분리.회수하는 프로세스에 대하여 연구하였다. 폐촉매를 $400^{\circ}C$로 3시간 동안 배소한 후, 20mesh 이하로 분쇄하여, 고액비 50g/d㎥의 조건에서 100g/d㎥-(NH$_4$)$_2$CO$_3$를 침출제로 하여 $80^{\circ}C$에서 침출한 결과 Ni, V 및 Mo의 침출율은 각각 81.2%, 65%, 87.5%이었다. 이 침출액을 방냉하면 침출액 중의 74%의 V이 바나듐산 나트륨염의 형태로 침전되어 순도 95.7%의 V을 회수할 수 있었다. 1차 침출 후의 잔사에$ Na_2$$CO_3$를 가하여 $1000^{\circ}C$에서 재차 배소한 후, 온수에 침출하여 잔존된 Mo과 V을 95%이상 침출되었다. 1차 침출액 중의 Ni, V 및 Mo을 용매추출법으로 분리.정제하였다. 용액 중의 Ni는 MSP-8, V은 TOMAC을 추출제로 하여 추출.분리하고 Mo은 raffinate로 분리하였다. Batch 추출에 의하여 Ni은 95%, V은 98%가 유기상에 추출되었으며, 역추출액에 환원제를 첨가하여 순도 99%이상의 V을 회수하였다.

  • PDF

국내 알루미늄 드로스의 처리공정에 관한 연구 (Pretreatment for Recycling of Domestic Aluminum Dross)

  • 박형규;이후인;김준수;윤의박
    • 자원리싸이클링
    • /
    • 제5권1호
    • /
    • pp.14-20
    • /
    • 1996
  • 알루미늄 드로스의 처리는 드로스의 특성과 처리후 발생될 폐드로스의 용도를 고려해서 처리하여야 한다. 이 연구에서는 선정된 시료의 성분과 처리 과정중의 성분변화 등을 조사하였으며, 분급과 같은 예비처리를 하여 드로스 입자가 큰 것은 재용해를 통해서 Al 금속을 바로 회수하고, 입자가 작은 것은 배소, 침출과 같은 예비처리를 해서 드로스 중의 염과 금속성분을 분리, 제거시킴으로써 폐기해야 할 드로스의 양을 줄였다. 드로스를 분급하여 바로 재용해하기 위한 입도의 분급 기준은 $300\mu \;extrm{m}$가 적당하였다. 또, 폐드로스의 재활용을 용이하게 하기 위하여 black 드로스를 처리후 발생된 폐드로스를 배소한 결과 폐드로스에 함유된 대부분의 금속 알루미늄을 알루미나로 산화시킬 수 있었다. 이것으로 보아 폐드로스는 배소하여 함유된 성분들을 산화물 상태로 변화시켜서 알루미나시멘트, 타일과 같은 요업재료나 알루미나 제조원료로 재활용하는 것이 바람직하다.

  • PDF

바나듐광 염배소물 수침출 용액으로부터 바나듐 회수공정 고찰 (Recovery Process of Vanadium from the Leaching Solution of Salt-Roasted Vanadate Ore)

  • 윤호성;허서진;박유진;김철주;정경우;김리나;전호석
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.40-48
    • /
    • 2022
  • 본 연구에서는 바나듐광 염배소-수침출 과정을 거쳐 얻어지는 바나듐 함유 수용액으로부터 바나듐을 암모늄메타바나데이트로 침전시켜 회수할 때, 수용액에 존재하는 다른 성분의 이온들이 바나듐 회수에 미치는 영향을 알아보았다. 바나듐 함유 수용액은 pH가 13 정도인 강알칼리 용액으로서, 암모늄메타바나데이트 침전효율을 높이기 위해서는 수용액 pH를 9 이하로 낮춰야 한다. 그러나 황산으로 수용액 pH를 조절하는 과정에서 알루미늄 이온은 바나듐과 같이 공침되기 때문에 알루미늄 이온을 먼저 제거시켜야 한다. 본 연구에서는 소듐실리케이트를 사용하여 알루미늄-실리케이트 화합물 형태로 침전시킴으로서 알루미늄을 제거하였으며, 이 과정에서 바나듐 손실을 최소화하는 조건에 대하여 알아보았다. 알루미늄 제거 후, 황산을 이용하여 수용액 pH를 9 이하로 조절하는 과정에서 수용액의 실리케이트 성분을 침전시켜 제거하였다. 이 때 황산의 농도와 첨가속도가 바나듐 손실에 큰 영향을 미치며, 가급적 25% 묽은 황산을 사용하여 천천히 첨가함으로서 바나듐 손실을 최소화 하였다. 알루미늄 제거 그리고 수용액 pH 조절 과정을 통하여 얻은 바나듐 수용액에 3 당량의 염화암모늄을 첨가하여 상온에서 침전시킨 결과, 전체적으로 81% 이상의 바나듐을 암모늄메타바나데이트로 회수할 수 있었다. 회수된 암모늄메타바나데이트를 세척한 후 550℃에서 2시간 열처리하여 98.6% 순도의 오산화바나듐을 얻을 수 있었다

반토혈암으로부터 $\alpha-Al_2O_3$제조에 관한 연구 (Manufacture of $\alpha-Al_2O_3$ from aluminous Shale)

  • 한오형;마동철;최경수
    • 자원리싸이클링
    • /
    • 제3권3호
    • /
    • pp.21-26
    • /
    • 1994
  • 국내에서 산출되고 있는 반토혈암으로부터 고순도 $\alpha-Al_2O_3$를 얻기 위하여 황산암모늄을 사용한 염배소와 황산을 이용한 추출 그리고 하소 실험을 하였다. 황산의 농도, 반응시간, 온도 등이 알루미나 추출에 미치는 영향에 대하여 조사하였으며, 반응산물은 X-ray, DTA-TG, 화학분석, SEM 등으로 분석하였다. 추출조건은 전처리 조건으로 황산암모늄의 농도가 0.6M, 배소온도가 $650^{\circ}C$였으며, 황산추출은 황산농도 10%로 240분간 추출할 경우 96%의 수율을 나타내었다. 생성된 $Al_2O_3$ 분말을 X-ray 분석한 결과 $\alpha-Al_2O_3$였으며 그 순도는 99.23%였다.

  • PDF

리튬이온전지 재활용공정 효율 향상을 위한 공정개선 연구동향 (The Enhancement of Recycling Processes Efficiency of Lithium Ion Batteries; A Review)

  • 유경근;허원화;김범중
    • 자원리싸이클링
    • /
    • 제33권2호
    • /
    • pp.24-36
    • /
    • 2024
  • 리튬이온전지 재활용 공정은 직접 재활용, 습식제련공정, 건식제련공정으로 분류되어 왔으며, 습식제련공정 기반 상용공정은 해체, 파분쇄, 열처리, 선별 등으로 구성된 전처리 공정으로 블랙매스를 생산하고 습식제련공정으로 각 금속을 회수한다. 개발 중인 모든 리튬이온전지 재활용공정은 전구체 원료 제조를 위해 전처리공정 후 침출 등의 습식제련공정을 진행하기 때문에 이 글에서는 재활용공정의 전처리공정에 따른 분류법을 제시하였다. 현재 개발 중인 주요 공정은 황산염배소, 탄소열환원, 합금제조 등이며, 전처리공정에서 미이용 부산물의 활용이 가능할 경우 리튬이온전지 재활용 공정의 경제성 향상이 가능하리라 판단된다.