VTM 정광 염배소 산물에 대한 바나듐 수침출 거동 분석 및 고농도 바나듐 용액 제조

박유진**** · 김리나**** · 김민석**** · 전호석**** · [§]정경우****

*한국지질자원연구원 자원활용연구본부, **과학기술연합대학원대학교 자원공학과

The Water Leaching Behavior of Vanadium from a Salt-roasted VTM Concentrate and the Preparation of High-concentration Vanadium Solution

Yujin Park****, Rina Kim****, Min-seuk Kim****, Ho-Seok Jeon**** and [§]Kyeong Woo Chung****

*Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Korea

**Resources Engineering Department, University of Science and Technology(UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea

요 약

본 연구에서는 탄산나트륨(Na₂CO₃)을 사용하여 염배소한 함바나듐 티탄철광(VTM)으로부터 바나듐의 수침출 거동을 고찰하였다. 자력선별 된 정광과 Na₂CO₃를 질량비 4:1로 혼합한 후 1050 °C, 3시간 조건에서 염배소하고 로드밀을 사용해 D₅₀=48.79 µm로 분쇄하여 연구에 사용하였으며 침출 온도와 광액 농도를 수침출 영향인자로 선정하였다. 연구 결과, 온도가 25, 55, 85 °C로 증가할수록 바나듐의 침출율은 90.4, 88.2, 83.8%로 감소하였으며 광액 농도 10, 50, 100 w/v%에 따른 바나듐 침출율은 각각 90.4, 87.0, 87.0%로 변화가 크지 않았다. 이를 바탕으로 25 °C, 100 w/v%, 300 rpm, 1시간의 조건에서 다단 침출을 수행한 결과, 총 4단 침출 후 최종 침출액의 바나듐 농 도는 16.20 g/L로 분석되었다. 따라서 다단 침출을 통해 고농도 소듐바나데이트 용액의 제조가 가능하였다.

주제어: 바나듐, 함바나듐 티탄철광, 염배소, 수침출, 다단침출

Abstract

This study investigated the water leaching behavior of vanadium in Na₂CO₃-roasted vanadium-bearing titaniferous magnetite (VTM) concentrate. The magnetic concentrate and Na₂CO₃, mixed in a mass ratio of 4:1, were roasted at 1050 °C, kept for 3 h, and ground to a size of $D_{50} = 48.79 \,\mu\text{m}$ using a rod mill. The effects of leaching temperature and pulp density on water leaching were then investigated. The results show that the vanadium leaching efficiency decreased to 90.4%, 88.2%, and 83.8% as the temperature increased to 25, 55, and 85 °C, respectively, whereas it remained almost constant 90.4%, 87.0%, and 87.0% as the pulp density increased to 10, 50, and 100 w/v%, respectively. Based on the preliminary leaching results, multi-stage leaching was conducted with the experimental conditions of 25 °C, 100 w/v%, 300 rpm, and 1 h. The vanadium concentration in the final leaching solution was determined as 16.20 g/L after four stages of leaching. Thus, a high-concentration sodium vanadate solution was prepared by multi-stage leaching.

Key words : Vanadium, VTM, Salt roasting, Water leaching, Multi-stage leaching

[§] Corresponding Author : Kyeong Woo Chung (E-mail : case7@kigam.re.kr)

[·] Received : March 28, 2022 · Revised : April 8, 2022 · Accepted : April 11, 2022

Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahank-ro, Yuseong-gu, Daejeon 34132, Korea

[©]The Korean Institute of Resources Recycling. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

1.서 론

바나듐(Vanadium, V)은 원자번호 23번의 5족 원소로 서 연성과 전성이 뛰어나다. 대부분의 금속보다 단단하고 잘 부식되지 않으며 미량만 첨가해도 고강도 강철을 제조 할 수 있어 주로 철강 산업에서 합금 원료로 사용되고 있 다^{1,2)}. 최근에는 에너지 저장장치(Energy storage system, ESS)에 사용되면서 리튬이온배터리를 대체할 바나듐레 독스흐름전지(Vanadium redox flow battery, VRFB)가 주목받고 있다. VRFB는 리튬 기반 배터리보다 상대적으 로 화재나 폭발 위험이 없고 에너지 공급 효율이 높아 앞 으로 수요가 더욱 확대될 것으로 예상 된다³⁾. 따라서 제조 원료인 바나듐을 안정적으로 공급하기 위한 효율적인 회 수 기술 개발 연구가 다양하게 수행되고 있다⁴⁻⁶⁾.

바나듐은 독립적인 광물로는 거의 존재하지 않고 철 (Fe), 티타늄(Ti), 우라늄(U), 알루미늄(Al)과 같은 금속광 물이나 탄소질 광물과 결합한 형태로 미량 존재하며 광물 격자 내에서 다양한 이온(Fe³⁺, Al³⁺, Ti⁴⁺, P⁵⁺)을 치환할 수 있다^{7,8)}. 주로 고철질 암석 내 존재하는 경우가 많으며 대표적인 바나듐 공급원으로는 자철석과 티탄철석이 주 로 이루어진 함바나듐 티탄철광(Vanadium-bearing titaniferous magnetite, VTM)이 잘 알려져 있다^{9,10}. VTM에 포함된 바나듐은 오산화바나듐(V2O5)기준 0.1~1.0% 함 유되어 있는 것으로 확인되고 일부 광산에서는 1.9%까지 보고되었다¹¹⁻¹⁵⁾. 부존된 광물 내 오산화바나듐 품위가 1% 이상일 경우 바나듐의 직접 회수가 가능하고 1%보다 낮을 경우 품위를 향상시키기 위해 부유 선별, 자력 선별 등의 공정이 요구 된다¹⁶⁾. 대표적으로 중국, 러시아, 남아 프리카 공화국 등에서 개발되고 있으며 국내의 경우 경기 연천 지역의 VTM 내 자철광에 바나듐이 부존되어 있는 것으로 보고되어 연구가 진행되고 있다^{17,18)}.

VTM 광상에 함유된 바나듐은 +3가의 형태로 주로 자 철석의 +3가 철이온을 치환하여 존재하고 물에 잘 용해되 지 않는다¹⁹⁾. 따라서 주로 염화나트륨(NaCl), 탄산나트륨 (Na₂CO₃), 황산나트륨(Na₂SO₄)등의 Na계 염과 고온 염 배소하여 소듐바나데이트(NaVO₃)로 전환하고 수침출 공 정을 통해 회수한다. 소듐바나데이트는 수용액 내 HVO₄²⁻ 또는 H₂VO₄ 형태로 존재할 수 있으며 별도의 산화제 없 이 수상에서 침출 가능하다²⁰⁾. 또한 수상에서는 VTM 광 상의 대부분을 차지하는 자철석과 티탄철석이 침출되지 않기 때문에 미량 존재하는 바나듐을 선택적으로 회수할 수 있다. 이와 같이 탄산나트륨을 이용한 VTM 광석의 염 배소와 바나듐의 수침출 공정을 화학식으로 나타내면 각 각 식 (1), (2)와 같다.

[바나듐 염배소]

$$Fe V_2 O_4 + Na_2 CO_3 + 1.25 O_2$$
(1)

$$\leftrightarrow 2Na VO_3 + 0.5Fe_2 O_3 + CO_{2(a)}$$

[바나듐 수침출]

$$Na VO_3 + H_2 O \leftrightarrow H_2 VO_4^- + Na^+ \tag{2}$$

염배소-수침출 공정으로 회수한 소듐바나데이트 침출 용액에서 고순도 바나듐 산물을 얻기 위해서는 일반적 으로 pH 및 용해도 차이를 이용하여 불순물 원소를 먼저 제거하고 바나듐을 침전시킨다. 바나듐 침전물은 AMV (Ammonium metavanadate) 침전법에 따라 과량의 암모 늄염을 투입하여 암모늄 메타바나데이트(NH₄VO₃)로 침 전시키고²¹⁾, 침전된 암모늄 메타바나데이트는 암모늄 제 거 과정을 거친 후 오산화바나듐으로 회수한다.

본 연구에서는 국내 부존되어있는 VTM 정광 내 바나 듐을 회수하기 위해 탄산나트륨을 사용한 염배소 산물의 수침출 거동을 분석하였다. 바나듐 회수 공정에서 침전물 로 제조되는 암모늄 메타바나데이트는 고농도에서 침전 반응이 더 빠르게 유도되기 때문에²²⁾ 수침출 공정에서 고 농도의 소듐바나데이트 침출 용액을 제조하는 것이 바나 듐의 회수율을 높이는 데 효과적이다. 따라서 본 연구에 서는 조건 변수에 의한 바나듐의 침출 거동을 파악하고 고 농도 바나듐 침출액을 제조하고자 하였다.

2. 재료 및 실험방법

2.1. 재료

본 연구에서 출발 물질로 사용된 VTM 정광 염배소 산 물은 자력선별-염배소 공정을 통해 제조되었으며 화학적 조성과 함량은 X-선 형광분석기(XRF, X-ray fluorescence) 로 분석한 결과 Table 1과 같다. 정광에 포함된 바나듐을 수침출에 용이한 형태로 전환하고자 Na₂CO₃를 첨가하여 염배소 하였으며 염배소 조건은 선행 연구결과를 따라 알 루미나 도가니에 시료와 Na₂CO₃를 질량비 4:1로 혼합해

Element	TiO ₂	FeO (Fe ₂ O ₃)	SiO ₂	Al ₂ O ₃	CaO	MnO	V ₂ O ₅
concentration(wt%)	7.3	70.4 (78.2)	0.8	2.4	0.2	0.1	1.0

Table 1. Chemical composition of VTM concentrate

Fig. 1. XRD analysis of the Na₂CO₃ roasting VTM concentrate.

장입하고 박스형 전기로를 이용하여 1,050°C에서 공기를 유량 2 L/min으로 주입하며 3시간 동안 배소하였다²⁰⁾. 염 배소된 시료는 X-선 회절분석기(XRD, D8 ADVANCE, BRUKER)로 분석한 결과 Fig. 1과 같이 적철석, 티탄철 석, 산화바나듐 등을 함유한 것으로 분석되었다.

2.2. 실험방법

실험은 Fig. 2와 같이 250 ml 이중 자켓 반응조를 사용 하여 수행하였으며 온도 조절을 위해 항온 순환 수조(CW-10G, JEIO TECH Co. Lte)를 이용하였다. 바나듐의 수침 출 최적 조건을 파악하고자 침출 온도(25~85 °C)와 광액 농도(10~100 w/v%)를 변수로 선정하였고 교반 속도는 300 rpm으로 고정하였다. 침출 반응은 초기에 빠르게 일 어나며 1시간 이후 바나듐의 침출율 변화가 없었으므로 침출 시간은 1시간으로 정하였다. 침출율은 식 (3)과 같이 침출 후 잔사 내 목적 금속의 절대량을 침출 전 시료 내 목 적 금속의 절대량으로 나누어 계산하였다(M_{T,F} : feed 내 목적 금속의 절대량(g), M_{T,R} : residue 내 목적 금속의 절 대량(g)). 계산을 위해 침출 전 시료와 침출 후 잔사를 왕 수(HCl:HNO₃ = 3:1 v/v)로 모두 녹이고 유도결합 플라즈 마 발광 분석기(ICP-OES, OPTIMA 8300, Perkin Elmer) 를 사용하여 농도 분석하였다.

Leaching efficiency(%)=

(3)

$$(1 - \frac{M_{T,R}}{M_{T,F}}) \times 100$$

Fig. 2. Schematic image of the experiment system for leaching process.

3. 결과 및 고찰

3.1. 수침출 조건에 따른 염배소 산물 침출 거동 분석

선행 연구 결과에 따라 VTM 정광 내 바나듐을 용이한 형태로 침출하기 위해 자력선별 된 정광과 Na₂CO₃를 질 량비 4:1로 혼합한 후 1050 ℃의 조건에서 3시간 동안 염 배소를 실시하였다. 염배소 후 산물은 매우 단단하므로 침출율을 높이고자 로드밀을 사용하여 배소 산물 1 kg 당 30분 동안 분쇄하였고 이에 따라 입도(D₅₀)는 119.70 µm 에서 48.79 µm까지 감소하였다(Fig. 3)²⁰⁾. 염배소 후 산물 에 대한 수침출 최적 조건을 도출하기 위해 침출 온도, 광 액 농도를 영향인자로 선정하여 침출 거동을 파악하고 도 출된 조건을 바탕으로 고농도 바나듐 침출용액을 제조하 고자 하였다.

분쇄된 염배소 산물에 대해 온도를 변화시키면서 300 rpm, 10 w/v% 광액 농도의 조건에서 1시간 동안 침출한 결 과, 바나듐의 침출율은 Fig. 4에 나타낸 바와 같이 침출 온 도가 25, 55, 85 °C로 증가함에 따라 90.4, 88.2, 83.8%로 감소하였다. 침출 용액에는 바나듐 이외 알루미늄과 실리콘 등이 존재하며 XRF 분석으로 확인되는 철, 티타늄, 망간 등

Fig. 3. Particle size distribution of (a) the roasted concentrate and (b) the roasted concentrate after grinding by rod mill.

은 침출액에서 분석되지 않았다. 이는 VTM 광석 내 맥석광 물이 염배소 공정을 통해 수상에서 용해 가능한 형태인 소 듐알루미네이트(NaAlO₂), 소듐실리케이트(Na₂SiO₃) 등으 로 전환되어 바나듐과 함께 침출된 것으로 추정 된다²³⁾. 침 출 용액에서 분석된 맥석광물에 대한 염배소-수침출 과정 을 화학식으로 나타내면 식 (4)~(7)과 같다.

[염배소]

 $Al_2O_3 + Na_2CO_3 \leftrightarrow 2NaAlO_2 + CO_2 \tag{4}$

$$SiO_2 + Na_2CO_3 \leftrightarrow Na_2SiO_3 + CO_2$$
 (5)

[수침출]

$$NaAlO_2 + 2H_2O \leftrightarrow + Na^+ + Al(OH)_4^- \tag{6}$$

$$Na_2SiO_3 + H_2O \leftrightarrow H_2SiO_4^{2-} + 2Na^+ \tag{7}$$

침출 결과, Fig. 5와 Fig. 6과 같이 시간 변화에 따른 알 루미늄과 실리콘의 침출 농도가 온도 상승에 따라 증가하

Fig. 4. Vanadium leaching efficiency (%) depending on the leaching temperature at 300 rpm.

Fig. 5. Al concentration (mg/L) depending on the leaching temperature at 300 rpm.

Fig. 6. Si concentration (mg/L) depending on the leaching temperature at 300 rpm.

는 것으로 확인되었으며 특히 알루미늄의 경우 1시간 경 과 시 25 °C, 241.2 mg/L에서 85 °C, 1056 mg/L로 크게 증가하였다. Xiaobo Zhu 등(2016)의 바나듐 침출액으로 부터 바나듐 회수에 대한 불순물 영향 연구에 따르면, 바 나듐 침출액 내 알루미늄 농도가 증가함에 따라 알루미늄 바나데이트(AIVO₄)의 생성되어 바나듐의 회수율은 감소 하였을 것으로 보고되었다²⁴. 본 연구에서도 고온에서 침 출된 알루미늄, 실리콘 등의 고농도 불순물이 바나듐 침 출을 저해한 것으로 사료된다. 따라서 불순물의 영향을 줄이고 바나듐의 침출율을 높이기 위해 이후 실험의 침출 온도는 25 ℃로 설정하였다.

온도 조건에 대한 침출 실험에 이어 분쇄된 염배소 산 물에 대해 광액 농도를 변화시키면서 25 °C, 300 rpm 조 건에서 1시간 동안 침출하였다. 바나듐의 침출율은 Fig. 7 에 나타낸 바와 같이 광액농도가 10, 50, 100 w/v% 등으 로 높아질수록 다소 감소하는 것으로 나타났으나 90.4, 87.0, 87.0%로 변화폭이 크지 않은 것으로 분석되었다. Fig. 8은 광액 농도 증가에 따른 바나듐 침출 농도를 나타

Fig. 7. Vanadium leaching efficiency (%) depending on the pulp density at 25 °C and 300 rpm.

Fig. 8. Vanadium concentration (mg/L) depending on the pulp density at 25 °C and 300 rpm.

낸 것으로서 바나듐 농도가 광액 농도 증가에 따라 선형적 으로 증가함(R²=0.9993)을 확인하였다. 따라서 1회 침출 시 더 많은 양의 바나듐을 회수할 수 있는 100 w/v%의 광 액 농도가 효율적인 것으로 판단하였다. 수침출 영향인자 에 대한 실험 결과, 염배소 산물로부터 바나듐 회수를 위 한 최적의 침출 조건은 온도 25 ℃, 광액 농도 100 w/v% 이다.

3.2. 다단침출에 따른 염배소 산물 침출 거동 분석

효율적으로 바나듐을 회수하기 위해 고농도 바나듐 용 액을 제조하고자 하였다. 본 연구에서 침출하고자 하는 소듐바나데이트 화합물은 수상에서 높은 용해도(15.07 g_{.NaV03}/100 g_{.water})²³⁾를 가지고 있으며 수침출 연구 결과 에 따라 광액농도 100 w/v%일 때 약 90%의 바나듐 침출 율을 보이므로, 주어진 수용액 내 다량의 바나듐을 농축 시키기 위해 Fig. 9와 같이 다단 침출을 수행하였다.

다단 침출은 수침출 영향인자에 따른 연구 결과를 바탕 으로 25 °C, 300 rpm, 100 w/v% 조건에서 1시간 동안 수 행하였다. 1단 침출 후 발생되는 침출액에 대해 새로운 염 배소 산물을 첨가하여 2단 침출 실험을 반복함으로써 2단 침출의 가능성을 조사하였으며, 4단 침출까지 완료한 결 과를 Fig. 10에 나타내었다. Fig. 10에서 볼 수 있는 바와

Fig. 10. Multi-stage leaching behaviors of V, Al, and Si at 25 °C and 300 rpm with 100 w/v%.

Fig. 9. Simplified schematic diagram of multi-stage leaching process.

Resources Recycling Vol. 31, No. 2, 2022

같이 바나듐의 농도는 4단 침출 시 약 16.20 g/L이고 알루 미늄과 실리콘의 농도는 각각 11.85 g/L, 0.38 g/L로 분석 되었다. 5단 침출 시 바나듐의 농도는 16.6 g/L로 분석되 어 추가적인 침출 효과가 미미하였으므로 4단 침출이 적 합한 침출 조건이라 판단하였다. 따라서 고농도 바나듐 용액의 제조는 4단 침출을 통해 가능하며 이를 통해 침출 수의 소비와 폐수의 발생을 줄이고 침출 공정의 효율을 높 일 수 있을 것으로 예상된다.

4.결 론

본 연구에서는 탄산나트륨을 사용하여 염배소한 VTM 정광으로부터 바나듐을 효율적으로 회수하기 위해 수침 출 거동을 조사하였다. 수침출의 영향인자로 온도와 광액 농도를 선정하여 바나듐 침출에 미치는 영향을 확인하고 고농도의 소듐바나데이트 침출용액을 제조하였으며 다음 과 같은 결론을 얻을 수 있었다.

- 침출 온도가 증가할수록 바나듐 침출율은 다소 감소하 였으며 알루미늄, 실리콘 등의 불순물 농도는 증가하였 다. 따라서 고온 침출에 의해 발생하는 고농도의 불순 물이 바나듐의 침출에 영향을 미치는 것으로 사료된다.
- 광액 농도에 따른 바나듐 침출율 변화는 크지 않으며 이는 수상에서 소듐바나데이트의 높은 용해도(15.07 g._{NaV03}/100 g._{water})에 기인한다. 따라서 공정 효율을 고 려한 최적의 침출 조건은 25 °C, 100 w/v%, 300 rpm 이다.
- 3. 침출 공정을 고효율화하고 폐수의 발생을 줄이기 위해 다단 침출을 수행한 결과, 총 4단 침출 후 최종 침출액 의 바나듐 농도는 16.20 g/L로 분석되며 고농도의 소듐 바나데이트 용액 제조가 가능하였다.

감사의 글

본 연구는 한국지질자원연구원 기본사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 21-3212-1)' 과제의 일환으로 수행되었습니다. 또한, 2021 년도 정부(산업통상자원부)의 재원으로 한국에너지기술평 가원의 지원을 받아 수행된 연구입니다(20216110100040, IP2021-017, 국내 바나듐함유광으로부터 바나듐광 스마 트 개발 및 원료화 기술개발).

References

- Zhang, Q., Zhao, Y., Yuan, G., et al., 2019 : The effect of vanadium on microstructure and mechanical properties of Fe-based high-strength alloys, Results in Physics, 15, 102335.
- Lee, S., 2020 : A Review on Types of Vanadium Deposits and Process Mineralogical Characteristics, Journal of The Korean Society of Mineral and Energy Resources Engineers, 57(6), pp.640-651.
- Li, L., Kim, S., Wang, W., et al., 2011 : A stable vanadium redox-flow battery with high energy density for largescale energy storage, Advanced Energy Materials, 1(3), pp.394-400.
- Vitolo, S., Seggiani, M., Filippi, S., et al., 2000 : Recovery of vanadium from heavy oil and Orimulsion fly ashes, Hydrometallurgy, 57(2), pp.141-149.
- Peng, H., 2019 : A literature review on leaching and recovery of vanadium, Journal of Environmental Chemical Engineering, 7(5), 103313.
- Luo, L., Miyazaki, T., Shibayama, A., et al., 2003 : A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap, Minerals Engineering, 16(7), pp.665-670.
- Moskalyk, R.R., Alfantazi, A.M., 2003 : Processing of vanadium: a review, Minerals Engineering, 16(9), pp.793-805.
- Yang, S.Z., 2010 : Vanadium Metallurgy, pp.136, Metallurgy Industry Press, Beijing.
- Huang, J. H., Huang, F., Evans, L., et al., 2015 : Vanadium: Global (bio) geochemistry, Chemical Geology, 417, pp. 68-89.
- Chen, D., 2019 : Annual evaluation for vanadium industry in 2018, Hebei Metallurgy, 8, pp.5-15.
- Boni, M., Terracciano, R., Evans, N. J., et al., 2007 : Genesis of vanadium ores in the Otavi Mountainland, Namibia, Economic Geology, 102(3), pp.441-469.
- Shawe, D.R., 2011 : Uranium-vanadium deposits of the Slick Rock district, Colorado. United States Geological Survey, Professional Paper, 576, pp.80.
- Fischer, R.P., 1975 : Vanadium resources in titaniferous magnetite deposits, U.S. Geological Survey Professional Paper, 926, p.9.
- Reynolds, I.M., 1985 : The nature and origin of titaniferous magnetite-rich layers in the upper zone of the Bushveld Complex—A review and synthesis, Economic Geology, 80, pp.1089-1108.
- Zhou, M.-F., Robinson, P.T., Lesher, C.M., et al., 2005 : Geochemistry, petrogenesis and metallogenesis of the Pan-

zhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China, Journal of Petrology, 46(11), pp.2253-2280.

- Liu, C., Eleish, A., Hystad, G., et al., 2018 : Analysis and visualization of vanadium mineral diversity and distribution, Journal of Earth and Planetary Materials, 103(7), pp. 1080-1086.
- Kim, J. S., 2013 : Research and development for the recovery of uranium and vanadium from Korean black shale ore, Journal of the Korean Institute of Resources Recycling, 22(1), pp.3-10.
- Go, B., Han, Y., Kim, S., et al., 2020 : Development of combination separation process for recovery of high-grade concentrate from Gwan-in Mine ilmenite, Journal of the Korean Society of Mineral and Energy Resources Engineers, 57(5), pp.413-420.
- Kelley, K.D., Scott, C.T., Polyak, D.E., et al., 2005 : Vanadium-Critical Mineral Resources of the United States-Economic and Enrivonmental Geology and Prospects for Future Supply. Professional Paper 1802-U. USGS. pp.48.
- 20. Kim, R., Kim, M. S., Lee, J. C., et al., 2021 : Optimization of Soda ash Roasting-water Leaching Conditions for Vanadium Recovery from a Vanadium-bearing Titaniferous Magnetite Ore, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.17-24.

김 리 나

- 서울대학교 에너지시스템공학부 박사
- 캐나다 퀸즈대학교 광산공학과 박사후연구원
- 현재 한국지질자원연구원 광물자원연구본부 선임연구원
- •당학회지제30권2호참조

- Lee, J. C., Kim, E. Y., Chung, K. W., et al., 2021 : A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production, Journal of Materials Research and Technology.
- Yoon, H. S., Chae, S., Kim, C. J., et al., 2019 : Precipitation Behavior of Ammonium Vanadate from Solution Containing Vanadium, Journal of the Korean Institute of Resources Recycling, 28(5), pp.42-50.
- Gilligan, R., Nikoloski, A. N., 2020 : The extraction of vanadium from titanomagnetites and other sources, Minerals Engineering, 146, 106106.
- Zhu, X., Li, W., Tang, S., and Li, W., 2016 : Effect of Impurity Ions on Vanadium Precipitation in Vanadium-rich Solution, Journal of Mining World Express, 5, pp.28-37.

박 유 진

- 2020년 한국해양대학교 에너지자원공학과 공학사
- 2022년 한국해양대학교 에너지자원공학과 석사
- 현재 과학기술연합대학원대학교 자원공학과 박사과정

김 민 석

- 현재 한국지질자원연구원 자원활용연구본부 책임연구원
- 당 학회지 제13권 5호 참조

전호석

- 강원대학교 자원공학과 공학박사
- 현재 한국지질자원연구원 자원활용연구본부 책임연구원, 과학기술연합대학원대학교 자원순환공학과 교수
- •당학회지제31권1호참조

정경우

- 현재 한국지질자원연구원 자원활용연구본부 책임연구원
- 당 학회지 제26권 5호 참조