• 제목/요약/키워드: 열-화학적 변환

검색결과 49건 처리시간 0.113초

전자파와 인체세포의 생리

  • 강위생
    • 한국전자파학회지:전자파기술
    • /
    • 제8권2호
    • /
    • pp.22-28
    • /
    • 1997
  • 세포는 생명체의 가장 기본단위이다. 식물은 태양 에너지를 변환하여 화학에너지의 형태로 축적한다. 모든 생물은 이 화학에너지를 변환하여 생명을 유지하고 있다. 인체 세포는 이 화학에너지 를 변환하여 세포 자체의 구조를 유지하면서 체온을 유지하고, 근육수축과 같은 기계적인 일과 신경 전달과 같은 전기적인 일도 한다. 또 세포는 새로운 화학물질을 합성하기도 한다. 세포에 이상이 생기면 조직이나 기관의 이상이 따르게 되고 결국 병적인 상태에 이르게 된다.외 부 환경이 세포의 기능에 영향을 미치는 것 중의 중요한 요인이다. 세포에 대한 외부환경은 세포를 둘러 싸고 있는 세포외액과 몸밖에서 들어오는 방사선이나 열과 같은 물리적 에너지로 대별된다. 영양의 불균형이나 섭취한 물질은 세포외액의 항상성 유지를 방해한다. 방사선, 특히 이온화 방사선은 직접 세포속에서 중요한 분자를 분해시키기도 하고 새로운 분자를 합성하기도 하여 세포를 죽이기도 하고 세포의 기능을 비정상적으로 바꾸기도 하고 드물게는 암세포로 바꾸기도 한다. 열은 단백질의 변성 을 촉진한다.

  • PDF

메탄 변환을 위한 아크 플라즈마 반응로의 전산해석

  • 민병일;최수석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.190.2-190.2
    • /
    • 2016
  • 메탄은 변환을 통해 아세틸렌 및 수소와 같은 에너지 생산에 보다 유용한 기체를 얻을 수 있다. 메탄의 열분해 온도는 약 1,200 K로 알려져 있으며, 그 이상의 고온 환경 및 첨가물을 제공한 경우 효과적인 변환을 기대할 수 있다. 이러한 고온 환경 및 화학반응을 제공할 수 있는 시스템으로 열플라즈마 반응로가 있다. 일반적인 열플라즈마는 아크 방전이나 고주파 유도결합 방전으로 플라즈마 발생기에서 발생시킨 이온화된 열유체로 10,000 K 이상의 초고온과 최대 수천 m/s의 특성을 가지고 있다. 본 연구에서는 효율적인 메탄 변환을 위한 저전력 아크 플라즈마 발생기 및 반응로 내부의 온도 및 속도장을 전산모사하여 열유동 특성을 분석하였다. 아크 플라즈마 토치 영역의 전산해석은 전자기적 현상과 고온 열유동의 유체역학적 현상이 함께 작용하므로 기존에 사용되고 있는 전산유체 역학적인 방법론에 전자기적 현상에 대한 보존 방정식이 결합된 자기유체역학(Magnetohydrodynamic, MHD)방법을 이용하였고, 반응기 내부의 복잡한 열유동은 안정적인 계산이 가능한 상용 전산 유체역학(Computational Fluids Dynamics, CFD) 코드를 MHD 코드를 이용한 전산해석 결과 및 고온 물성치와 결합하여 해석하였다. 전산해석에 사용된 운전 변수로는 방전기체인 아르곤과 수소의 전체 유량을 45 L/min 으로 고정하고 수소의 비율을 0%, 6%, 12.5%, 20%로 하였으며, 각 유량 조건에서 입력 전력을 0.7 ~ 2.5 KW로 변화시켜 전체 15종의 운전조건에 따른 전산해석을 수행하여 각각의 운전변수에 따라 입력전력 기준 오차 1 ~ 28%에 해당하는 결과를 도출하였다. 본 연구를 통해 개발된 전산해석 방법을 이용하여 다양한 조건에서 아크 플라즈마 반응로 내부의 온도 및 속도장에 대한 전산해석 결과를 제시하였고, 효율적인 메탄 변환 공정을 개발하기 위한 아크 플라즈마 반응로의 설계조건 및 운전 조건을 제시할 수 있는 기반을 확보하였다.

  • PDF

전기화학적 임피던스 분광법 기반 이동 평균 추세선을 이용한 고출력 배터리의 이상 탐지 기법 연구 (Study on the anomaly detection method of high power battery using moving average trend line based EIS)

  • 이평연;안정호;권상욱;이동재;유기수;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.212-214
    • /
    • 2020
  • 리튬이온 배터리를 고온의 환경에서 장시간 운용함에 따라 배터리 내부 물질의 변형 및 특성 변화가 발생하여 안전성의 문제가 발생하게 된다. 배터리의 안전성을 향상하기 위해 배터리의 고장 및 이상 상태를 진단 및 탐지하는 기법들의 연구가 진행되고 있다. 본 논문에서는 배터리의 이상 상황을 모사하기 위해 열폭주의 한 가지 방법인 고온의 환경에서 배터리의 특성 변화를 전기화학적 임피던스 분광법을 통해 분석하였으며, 등가회로 모델의 특성 인자를 활용하여 이상 상황을 탐지할 수 있는 이동 평균 추세선 기반의 이상 탐지 기법을 제안하며, 열폭주가 발생한 데이터를 통해 이상 탐지 기법을 검증한다.

  • PDF

차세대 연료전지 기술 국가기술지도 [NTRM]

  • 한종희;임태훈
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.121-139
    • /
    • 2003
  • 기술분석, 기술적 극복과제 도출 및 해결방안, 경제성 분석(환경 cost 고려), 단계별 개발목표의 정량화, 목표달성 방안(추진 시나리오), 기술의 정의 : 연료의 화학에너지를 전기화학반응에 의해 전기에너지로 직접 변환하는 발전 장치로서, 기존의 발전 기술보다 높은 발전효율로 그리고 공해물질 배출은 줄이면서 전기와 열을 동시에 생산하는 기술(중략)

  • PDF

목질계 바이오매스 숯 생산 공정에서 발생하는 열분해가스 생산 특성 (Characteristics of pyrolysis gas production in charcoal production process of lignocelluloisic biomass)

  • 박수남;구재회;임용택;허려화;서용교;이일규;하후찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.443-446
    • /
    • 2009
  • 바이오매스 에너지라 함은 생물체를 구성하는 유기물을 이용하는 에너지이다. 바이오매스는 에너지 위기 및 $CO_2$에 의한 지구온난화 및 화석자원의 고갈이 진행되면서, 화석연료와 달리 재생이 가능하고 지속 가능한 자원으로 각광을 받고 있다. 그 중에서도 목질계 바이오매스는 다른 신재생에너지원에 비해 국내 잠재량이 가장 풍부한 에너지원 중의 하나이다. 바이오매스 에너지 기술로는 직접연소, 열화학적 변환, 생화학적 변환의 기술이 있다. 본 연구에서는 목재를 원료로 한 부분산화 조건의 숯 생산 공정에서 목재의 열분해 가스 생산특성을 고찰하였다. 열분해가스 중에 응축된 목초액의 pH는 3.58~3.92 정도로 분석 되었고, 산도는 시간이 경과 할수록 2.74에서 4.44%로 농도가 증가 되었다. 숯 생산 공정에서의 목재의 열분해는 초기부터 48시간까지는 열분해가스의 조성의 변화가 거의 없었고, 48시간 경과 후에는 열분해가스 중에 가연성가스인 $H_2$, CO, $CH_4$가 약 5%정도 배출되는 것을 알 수 있었다.

  • PDF

고분자전해질형 연료전지 발전시스템의 안전운전을 위한 고성능 전력변환기에 관한 연구 (A Study on High Efficiency Power Conditioning System for Safety Operation of PEMFC_type Fuel Cell Generation System)

  • 곽동걸
    • 마이크로전자및패키징학회지
    • /
    • 제13권1호통권38호
    • /
    • pp.57-61
    • /
    • 2006
  • 연료전지는 연료(수소)의 화학적 반응에 의해 축적된 화학에너지를 전기에너지로 변환하여 직류 전기를 발생시키는 에너지원이다. 연료전지는 질소나 유황산화물 등의 유해한 물질을 방출하지 않으며 기계적 동력부가 없고 거의 무소음으로 운전되는 이점을 가진다. 수소연료에 의한 연료전지는 그들의 부산물로써 열과 물을 방출한다. 연료전지를 이용한 응용분야의 확대로 인해 화석연료나 수입 석유의 의존도를 현저히 감소시킬 수 있다. 본 논문에서는 이러한 연료전지 (PEMFC, Proton Exchange Membrane Fuel Cell)의 출력을 치대한 활용하고 발전시스템의 안전운전을 위한 전력변환기(PCS, Power Conditioning System)에 대해 연구하였다. 본 논문에서는 고효율로 운전하는 새로운 전력변환 회로토폴로지를 설계하고, 발전시스템에 적용하여 각종 실험을 통하여 그 타당성을 입증하였다. 그 결과 연료전지 발전시스템은 고성능으로 동작되는 전력변환기에 의해 발전시스템의 효율과 성능을 향상시키게 된다.

  • PDF

장거리 열수송을 위한 메탄올 분해/합성 반응 최적화 조건의 실험적 연구 (An Experimental Study on the Optimal Conditions of Decomposition/Synthesis of Methanol for Heat Transport from Long Distance)

  • 윤석만;문승현;이승재;최순영
    • 에너지공학
    • /
    • 제19권3호
    • /
    • pp.195-202
    • /
    • 2010
  • 최근 국내 연간 1차 에너지 사용량의 약 30% 이상이 폐열로 손실되어지고 있다. 이러한 현실을 타개하기 위하여, 본 논문에서는 장거리 열수송시 에너지 손실을 최소화할 수 있는 신기술로 화학 열변환을 이용한 장거리 열수송 기술을 채택하여, 화학 열변환에 있어서의 최적조건 도출을 목적으로 하였다. 화학 열변환을 위한 반응에 대해서는 많은 연구와 기술개발이 이루어지고 있으며, 그 중 물질이 안정하고, 값이 저렴하며, 생성물이 가스인 메탄올 분해 합성 반응이 가장 타당한 것으로 판단되었다. 본 연구에서는 장거리 열수송 기술 개발에 필요한 메탄올 분해 합성 반응 촉매를 각각 선정하여, 열수송 시스템 구축을 위한 메탄올 분해 합성 반응의 최적화 조건 도출을 위한 실험 연구를 수행하였다. 메탄올 합성 반응에서는 온도, 압력, $H_2$/CO ratio, 공간 속도, 촉매 형태에 따른 영향을 보았고, 메탄올의 분해 반응에서는 온도, 공간속도, 촉매 형태를 변수로 하여 상압에서 영향을 분석하여 메탄올 분해 합성 반응의 최적화 조건을 제시하였다.

고색재현성 디스플레이 응용을 위한 고안정성 양자점 함유 유리색변환소재

  • 정운진;이한솔;이진주
    • 인포메이션 디스플레이
    • /
    • 제23권4호
    • /
    • pp.12-21
    • /
    • 2022
  • 반도체 기반 양자점 (QD)소재와 CsPbX3 (X=Cl, Br, I)기반 perovskite 양자점 또는 나노결정 소재(PNC)는 매우 우수한 양자효율과 좁은 발광 선폭으로 고색재현성 디스플레이 색변환 소재 또는 발광 소재로서 각광을 받고 있다. 그러나, 기존 화학적 합성법을 통해 제조되는 QD 및 PNC 소재는 취약한 열 및 화학적 안정성으로 인해 장기 내구성의 개선이 요구된다. 이들 QD 및 PNC 소재는 모두 완전 무기 소재인 산화물 기반 유리 소재내에 생성이 가능하며, 이를 통해 장기 내구성을 근본적으로 개선할 수 있다. 반도체 기반 QD 함유 유리소재 (QDEG)의 경우, 유리 내 core/shell 구조를 가진 QD의 생성으로 양자효율의 향상이 가능했으나, 콜로이드 기반 양자점 (cQD)과 달리 다중 shell의 형성이 어려워 양자효율이 제한되고, 발광 선폭이 넓어 고색재현성 디스플레이용 색변환 소재로 적용되기에는 아직 한계가 있다. 한편, Perovskite 양자점 (또는 나노결정) 함유 유리소재 (PNEG) 소재는 QDEG과 달리 콜로이드 기반의 PNC (c-PNC)가 가지는 우수한 양자효율과 20 nm 수준의 좁은 선폭을 유리 내에서도 가지며, c-PNC 대비 열적, 화학적 및 광학적 안정성이 획기적으로 향상되어 실질적인 응용 가능성을 높이고 있다. 특히, 일반적인 용융-급랭법으로 제조하여 대량생산에 용이하고, 분말 또는 판상 등 다양한 형태로의 제작이 가능한 장점이 있다. 현재까지 제조된 PNEG의 최대 PL-QY는 450 nm 여기 시 녹색 및 적색에서 약 60% 수준이며, Al2O3 분말을 이용할 경우 최대 80% 수준까지 달성이 가능하다. 또한, PNEG과 blue LED를 이용하여 백색 LED를 구현할 경우 color filter를 적용하지 않을 때, NTSC 대비 최대 약 130 % 수준의 높은 색재현 영역을 보여 주고 있으며, 실제 LCD용 BLU로 적용 시 기존 상용 c-QD 소재와 동등 이상의 색재현 영역을 보이고 있어, 실질적인 응용 가능성이 매우 높음을 확인하였다. PNEG의 상업적인 응용을 위해서는 몇 가지 추가적인 연구 개발이 필요하다. 기존 c-QD 또는 c-PNC는 나노 수준 크기의 입자가 액상에 분산된 형태로 입도 제어가 용이하나, PNEG의 경우 분말 제조 시 유리 형성 후 분쇄를 통해 제조되며, 입도가 대개 수십 ㎛ 이하로 작아질 경우 PL-QY가 저하되어, 향후 잉크젯 공정 응용을 위해서는 고효율의 분말 제조공정 개발이 필요하다. 또한, 유리 소재의 경우 절연체로서 기존 QD 소재 대비 electro-luminescence(EL) 소자의 활성층으로 사용하는데 제약이 있어 PNEG을 이용한 EL 소자 제작에 대한 연구도 필요하다. 마지막으로, 기존 c-PNC 소재와 같이 Pb가 함유되지 않은 PNEG 소재의 개발이 선결되어야 할 것으로 판단된다. 이와 같은 해결 과제들에도 불구하고, PNEG 소재는 기존 c-QD 소재 대비 매우 우수한 안정성을 기반으로 고품위 고색재현 디스플레이용 색변환 소재로서 다양한 응용에 활용될 수 있을 것으로 기대된다.

금 나노입자를 이용한 광열치료 연구 동향 (Research Trends in Photothermal Therapy Using Gold Nanoparticles)

  • 김봉근;여도경;나현빈
    • 공업화학
    • /
    • 제28권4호
    • /
    • pp.383-396
    • /
    • 2017
  • 광열치료는 빛을 받아 열로 변환하는 광열특성을 가진 광열변환기를 통해 세포의 병변, 특히 암세포를 선택적으로 사멸시키는 치료법이다. 광열특성을 가지는 다양한 물질들이 광열치료에 적용되어왔지만, 그중에서도 금 나노입자는 그 고유한 물리화학적 특성으로 지난 20년 가까이 과학자와 의료인들에게 큰 관심을 받아왔다. 본 총설에서는 금 나노입자를 사용하여 광열치료효과를 향상시키기 위한 전략들을 최근의 광열치료 연구를 중심으로 정리하여 서술하였다. 특히, 광열변환기로서 사용되는 다양한 금 나노입자 구조체의 합성 및 광학 성질 제어를 통해 광열변환 효율 향상을 시도한 연구들과 금 나노입자를 병소에 효과적으로 축적시키기 위한 선별적 전달 방법들을 논의하였으며, 마지막에는 근래에 적극적으로 시도되고 있는 다른 치료법 및 진단기술과의 융합 연구들을 소개했다.

투명 근적외선 흡수 염료 및 응용 분야 (Transparent Near-infrared Absorbing Dyes and Applications)

  • 정효철;정지은;이상호;김진철;박영일
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.207-212
    • /
    • 2023
  • 근적외선 흡수 염료는 전통적으로 정보 기록 및 정보 표시 분야에 사용되었을 뿐만 아니라 최근 광학 필터, 바이오, 에너지 저장 및 변환, 코팅 첨가제 등 다양한 응용 분야에 적용되고 있다. 핸드폰이나 디지털 카메라에 사용되는 이미지 센서는 근적외선 영역에서도 감도를 나타내기 때문에 보다 선명한 이미지를 구현하기 위해 근적외선 광학필터가 필수적이다. 에너지 저장 및 변환이 중요해짐에 따라 투명 태양 전지 분야에서는 근적외선 영역까지 흡수 영역을 확장할 수 있도록 다양한 근적외선 흡수 소재가 개발되고 있으며, 이를 이용해 소자 효율을 향상시키는 연구가 진행되고 있다. 미래 모빌리티 기술로 많은 관심을 받고 있는 자기치유 코팅 시스템에 광-열 효과를 갖는 근적외선 흡수 염료가 도입되어 보다 효율적인 자기치유 성능을 구현하는 연구들도 보고되고 있다. 본 총설에서는 대표적인 근적외선 흡수 염료들의 화학 구조들을 소개하고, 근적외선 흡수 염료들을 기반으로 한 최신 응용 연구 동향에 대해 다뤄보고자 한다.