DOI QR코드

DOI QR Code

Transparent Near-infrared Absorbing Dyes and Applications

투명 근적외선 흡수 염료 및 응용 분야

  • Hyocheol Jung (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Ji-Eun Jeong (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Sang-Ho Lee (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Jin Chul Kim (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Young Il Park (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology)
  • 정효철 (한국화학연구원 정밀.바이오화학연구본부 정밀화학융합기술연구센터) ;
  • 정지은 (한국화학연구원 정밀.바이오화학연구본부 정밀화학융합기술연구센터) ;
  • 이상호 (한국화학연구원 정밀.바이오화학연구본부 정밀화학융합기술연구센터) ;
  • 김진철 (한국화학연구원 정밀.바이오화학연구본부 정밀화학융합기술연구센터) ;
  • 박영일 (한국화학연구원 정밀.바이오화학연구본부 정밀화학융합기술연구센터)
  • Received : 2023.01.30
  • Accepted : 2023.03.30
  • Published : 2023.06.10

Abstract

Near-infrared (NIR) absorbing dyes have been applied to various applications such as optical filters, biotechnology, energy storage and conversion, coating additive, and traditionally information-storage materials. Because image sensors used in cellphones and digital cameras have sensitivity in the NIR region, the NIR cut-off filter is essential to achieving more clear images. As energy storage and conversion have been important, diverse NIR absorbing materials have been developed to extend the absorption region to the NIR region, and NIR absorbing materials-based research has proceeded to improve device performances. Adding NIR-absorbing dye with a photo-thermal effect to a self-healable coating system has been attractive for future mobility technology, and more effective self-healing properties have been reported. In this report, the chemical structures of representative NIR-absorbing dyes and state of the art research based on NIR-absorbing dyes are introduced.

근적외선 흡수 염료는 전통적으로 정보 기록 및 정보 표시 분야에 사용되었을 뿐만 아니라 최근 광학 필터, 바이오, 에너지 저장 및 변환, 코팅 첨가제 등 다양한 응용 분야에 적용되고 있다. 핸드폰이나 디지털 카메라에 사용되는 이미지 센서는 근적외선 영역에서도 감도를 나타내기 때문에 보다 선명한 이미지를 구현하기 위해 근적외선 광학필터가 필수적이다. 에너지 저장 및 변환이 중요해짐에 따라 투명 태양 전지 분야에서는 근적외선 영역까지 흡수 영역을 확장할 수 있도록 다양한 근적외선 흡수 소재가 개발되고 있으며, 이를 이용해 소자 효율을 향상시키는 연구가 진행되고 있다. 미래 모빌리티 기술로 많은 관심을 받고 있는 자기치유 코팅 시스템에 광-열 효과를 갖는 근적외선 흡수 염료가 도입되어 보다 효율적인 자기치유 성능을 구현하는 연구들도 보고되고 있다. 본 총설에서는 대표적인 근적외선 흡수 염료들의 화학 구조들을 소개하고, 근적외선 흡수 염료들을 기반으로 한 최신 응용 연구 동향에 대해 다뤄보고자 한다.

Keywords

Acknowledgement

이 논문은 한국화학연구원 기본사업(KS2241-20)과 산업통상자원부 소재부품 기술개발 사업(과제번호: 20011133)의 지원을 받아 작성되었음.

References

  1. R. Meng, Q. Jiang, and D. Liu, Balancing efficiency and transparency in organic transparent photovoltaics, npj Flex. Electron., 6, 39 (2022). 
  2. J. Lee, H. Cha, H. Yao, J. Hou, Y. H. Suh, S. Jeong, K. Lee, and J. R. Durant, Toward visibly transparent organic photovoltaic cells based on a near-infrared harvesting bulk heterojunction blend, ACS Appl. Mater. Interfaces, 12, 32764-32770 
  3. D. H. Son, H. E. Bae, M. J. Bae, S. Lee, I. W. Cheong, Y. I. Park, J. E. Jeong, and J. C. Kim, ACS Appl. Polym. Mater., 4, 3802-3810 (2022)  https://doi.org/10.1021/acsapm.1c01768
  4. H. M. Kim, H. J. Lee, H. K. Lee, T. G. Hwang, J. M. Lee, S. Kim, and J. P. Kim, Binder-endowed thermal stability of diammonium dye-based near-infrared (NIR) absorbing films, Mater. Chem. Phys., 270, 124773 (2021). 
  5. H. Song, S. Luo, H. Huang, B. Deng, and J. Ye, Solar-driven hydrogen production: Recent advances, challenges, and future perspectives, ACS Energy Lett., 7, 1043-1065 (2022).  https://doi.org/10.1021/acsenergylett.1c02591
  6. M. Qin, M. Liu, Z. Zeng, Q. Wu, Y. Wu, H. Zhang, S. Lei, S. Cheng, and J. Xie, Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature li-ions batteries, Adv. Energy Mater., 12, 2201801 (2022). 
  7. H. Yai and J. Hou, Recent advances in single-junction organic solar cells, Angew. Chem. Int. Ed., 134, e202209021 (2022). 
  8. Z. Guo, A. K. Jena, G. M. Kim, and T. Miyasaka, The high open-circuit voltage of perovskite solar cells: A review, Energy Environ. Sci., 15, 3171-3222 (2022). 
  9. J. Miao, Y. Wang, J. Liu, and L. Wang, Organoboron molecules and polymers for organic solar cell applications, Chem. Soc. Rev., 51, 153-187 (2022).  https://doi.org/10.1039/D1CS00974E
  10. R. Sharma, A. Sharma, S. Agarwal, and M. S. Dhaka, Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review, Solar Energy, 244, 516-535 (2022).  https://doi.org/10.1016/j.solener.2022.08.001
  11. W. Zhu, S. Wang, X. Zhang, A. Wang, C. Wu, and F. Hao, Ion migration in organic-inorganic hybrid perovskite solar cells: Current understanding and perspectives, Small, 18, 2105783 (2022). 
  12. J. Huang, C. Y. Gao, X. H. Fan, X. Zhu, and L. M. Yang, Fine-tuning active layer morphology via modification of both side chains and terminal groups toward high-performance organic solar cells, Energy Technol., 10, 2100912 (2022). 
  13. S. Zhang, X. Ma, C. Xu, W. Xu, S. Y. Jeong, H. Y. Woo, Z. Zhou, X. Zhang, and F. Zhang, Boosted efficiency over 18.1% of polymer solar cells by employing large extinction coefficients material as the third component, Macromol. Rapid. Commun., 43, 2200345 (2022). 
  14. S. Y. Chang, P. Cheng, G. Li, and Y. Yang, Transparent polymer photovoltaics for solar energy harvesting and beyond, Joule, 2, 1039-1054 (2018).  https://doi.org/10.1016/j.joule.2018.04.005
  15. C. J. Traverse, R. Pandey, M. C. Barr, and R. R. Lunt, Emergence of highly transparent photovoltaics for distributed applications, Nat. Energy, 2, 849-860 (2017).  https://doi.org/10.1038/s41560-017-0016-9
  16. M. Z. Li, C. C. Lee, S. Biring, I. S. Hsu, D. Luo, R. Estrada, Y. S. Wu, C. C. Yang, and S. W. Liu, Vacuum-deposited transparent organic photovoltaics for efficiently harvesting selective ultraviolet and near-infrared solar energy, Sol. RRL, 5, 2000564 (2020).