• Title/Summary/Keyword: 열-구조 모델

Search Result 581, Processing Time 0.027 seconds

A Study on a New Concept for the Structural Strength Assessment to Development of Membrane LNG Cargo Container System under Static Load (멤브레인형 LNG 화물창 개발을 위한 정적 구조 안전성 평가 모델 연구)

  • Hwang, Se Yun;Kim, Yooil;Kang, Joong Kyoo;Lee, Jang Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.162-169
    • /
    • 2016
  • A new concept of membrane type LNG CCS was proposed. Also, its static behavior was numerically analyzed considering the interaction between primary and secondary barrier together with securing device. Hull deflection was taken into account as an external load, together with temperature distribution across the barriers. The suggested numerical model considers both sliding and contact between the two mating surfaces of both the primary and secondary barrier, and anisotropic material behavior of plywood, R-PUF was also taken into account. Furthermore, detailed local strength was evaluated for the securing device, which is arranged between two barriers to hold the primary barrier. It was confirmed through the numerical analysis that the new concept of membrane type CCS was structurally safe under static loading condition and securing concept was structurally reliable.

Preliminary Combustion Tests in Bi-Swirl Coaxial Injectors Using Gaseous Methane/Gaseous Oxygen Propellants (기체메탄/기체산소 추진제를 이용한 동축 와류형 분사기에서의 예비 연소실험)

  • Hwang, Donghyun;Bak, Sujin;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.70-80
    • /
    • 2019
  • Combustion tests using six bi-swirl coaxial injectors with different shapes and recess lengths were performed in a model combustion chamber capable of flame visualization. By utilizing gaseous methane and gaseous oxygen instead of actual propellants, the effects of injector design and experimental conditions on the flame structure and combustion stability were analyzed. It was found that not only the experimental conditions but also the injector geometry such as the recess length and orifice diameter had a considerable influence on the combustion stability. In addition, it was confirmed that the heat release pattern changed with the occurrence of combustion instability.

Numerical Study on Normal Propagation Bimetallic Reaction Wave in Al/Ni Nano-Multilayers (알루미늄/니켈 나노박막다층 내 수직방향 이종금속 반응파 전파 해석연구)

  • Kim, Kyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.20-27
    • /
    • 2022
  • Present modeling study of nanoenergetics focuses on the numerical simulation of reaction wave propagation in normal direction across nanoscale multilayers of aluminum and nickel combination. The governing equations for atomic and thermal diffusion are employed in one-dimensional semi-infinitely alternating Al/Ni multilayered structures and the numerical results show the established patterns of quasi-steady intermetallic reaction waves. Also, the reaction wave speed is confirmed to be highly independent of reaction wave directions in such nanoenergetic structures.

Projection of future short duration rainfall quantile using rainfall disaggregation technique (강우분해기법을 이용한 미래 단기 확률 강우량 전망)

  • Lee, Jeonghoon;Seo, Jiyu;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.428-428
    • /
    • 2022
  • 본 연구에서는 최근 RCM을 이용하여 생산된 미래 강우자료를 1시간강우량으로 변환하기 위한 Neyman-Scott Rectangular Pulse(NSRP) 모델 기반의 강우분해기법을 개발하고 이를 기반으로 짧은 지속시간에 대한 확률강우량이 어떻게 변화하는지 전망해보고자 하였다. 강우분해기법의 성능평가는 관측자료를 이용하여 수행되었으며, 관측 시계열을 우수하게 모의했으나 일최대 시간 강수량이 20mm를 초과하는 경우 불확실성이 증가함에 따라 사용에 주의가 필요할 것으로 판단된다. 미래 확률강우량 전망결과는 모든 지점(울산, 부산, 창원, 밀양)에서 향후 재현기간별 1시간 확률강우량이 증가될 것으로 전망되었다. 울산과 밀양 지점의 경우, 재현기간에 클수록 증가율 또한 증가하는 경향이 뚜렷하게 나타났는데 이는 상대적으로 복잡한 산악지역 내 위치하고 있고, 다른 지점보다 산지효과 영향이 크기 때문으로 판단된다. 부산과 창원지점은 다른 두 지점에 비해 재현 기간별 확률강우량의 변동성이 크게 나타났는데, 이는 해안에 가깝에 위치해 있어 RCM별 불확실성이 다소 크게 작용한 것으로 판단된다. 특히 과거 200년 빈도 확률강우량 보다 미래 50년미만 빈도 확률 강우량이 더 커질 수 있는 가능성을 확인하였다. 다양한 불확실성이 포함되어 있는 결과이긴 하나 이러한 결과를 기반으로 곧 도래할 미래의 도시유역 방재성능 재정비가 필요할 것으로 사료된다. 아울러, 극한 강우발생 가능성이 높아질 수 있음을 의미하기 때문에 이에 대한 새로운 수자원의 이수와 치수 대비를 위한 구조적/비구조적 대책이 시급할 것으로 판단된다.

  • PDF

Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation (콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.

Design and Implementation on Frequency Synthesizer Qualification Model Level for SAR payload (위성 레이다용 QM급 주파수합성기 설계 및 제작)

  • Kim, Dongsik;Kim, Hyunchul;Heo, John;Kim, Wansik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.9-14
    • /
    • 2020
  • In this paper, Qualification Model of frequency synthesizer is designed for X-band SAR system and performed electrical and environment test. Designed frequency synthesizer generate 13.65 GHz with very low phase noise performance. The integrated phase noise from 10Hz to 1MHz is -37.91 dBc. IRF performances are analyzed according to phase noise and jitter. Also, thermal and structure analysis are achieved for stable operation in space environment. Designed frequency synthesizer is consist of 2 modules of 6U size and generate L-band, C-band, Ku-band. The result of this study would enhance the design ability of RF module and help the frequency synthesizer design for SAR payload system.

Improvement of Endothermic Characteristics with Catalyst Molding in Hypersonic Aircraft Cooling System (초고속 비행체 냉각을 위한 연료의 흡열성능 개선용 성형촉매 적용연구)

  • Hyeon, Dong Hun;Lee, Tae Ho;Kim, Sung Hyun;Jeong, Byung Hun;Han, Jeong Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.56-60
    • /
    • 2017
  • In hypersonic aircraft, increase of aerodynamic heat and engine heat leads heat loads in airframe. It could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which are able to absorb the heat load by undergoing endothermic reactions. In this study, exo-tetrahydrodicyclopentadiene was selected as a model endothermic fuel and experiments were investigated in endothermic fuel cooling system with zeolite catalyst. Three shapes of catalysts have been manufactured and endothermic characteristics were recovered. Bineded catalyst showed higher heat absorption and conversion than other two zeolite catalysts. In product distribution, binded catalyst showed higher aromatics composition.

Oblique Angle Effect of Impinging Jet on Heat Flow Characteristics of a Corrugated Structure (충돌제트의 경사각도가 파형 구조의 열유동 특성에 미치는 영향)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.83-93
    • /
    • 2017
  • A numerical analysis is made of the fluid flow and heat transfer characteristics in the corrugated structure that traps the spent air in the corrugations between impinging jets to reduce crossflow effects on downstream jets in the array. All computations are performed by considering three-dimensional, steady state, and incompressible flow by using the ANSYS-CFX 15.0 code. Averaged jet Reynolds number is 10,000. The oblique angles of impingement jets on the spanwise section are $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, and the oblique angles of impingement jets on the streamwise section are $70^{\circ}$, $90^{\circ}$, $110^{\circ}$. The investigation focuses on the oblique angle influence of impinging jet array on the fluid flow and heat transfer characteristics of a corrugated structure.

Significant Structure of Liquid Water (물의 구조와 성질)

  • Pak, Hyung-Suk;Chang, Sei-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.68-74
    • /
    • 1964
  • Water has the melting point, the boiling point, the heat of fusion, and the heat of vaporization all much higher than would be normally expected from the hydrogen compounds of the other members of the oxygen family. Another unique characteristic of ice-Ⅰ is its volume decrease which takes place in its melting. A number of significant efforts have been made in the past to explain these properties quantitatively. The authors, reasoning from the unusually great free surface energy of water and the characteristic volume change on melting, propose the structural model of liquid water as follows. On melting, fluidized vacancies of a molecular size are introduced. Thereupon, for the unusually great surface energy density, molecules surrounding the vacancies become to have close packed arrangement. But molecules not in direct contact with vacancies should still possess the original structure i. e., ice-Ⅰ. When a molecule adjacent to a vacancy jumps into the vacancy, the molecule attains the gaslike degree of freedom. Using the above model, the authors had developed the liquid partition function of water by applying the theory of significant structures in liquids. Molar volume, vapor pressure, entropy of fusion and entropy of vaporization were calculated over a wide temperature range. The results show good agreement with experimental observations.

  • PDF

An Study on Efficiency and Use of Theories in Library and Information Science (문헌정보학 이론의 효율성과 활용성 연구)

  • 김성진;정동열
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.1
    • /
    • pp.23-53
    • /
    • 2004
  • The purpose of this study is to analyze the identity and relationship of library and information science by exploring theoretical aspects of LIS research, including theory building and theory use. The sample of this study consists of 1,661 research articles published from 1984 to 2003 in two Korean and two American core LIS journals. Theory articles are analyzed with two scales, such as '4-degree of theory efficiency' and '5-degree of theory use' Each article is coded in terms of journal, country, publication year, subfield, and methodology of the article. and affiliation, department, and research experience of the first author. The theories used therein are coded according to their origin and age. Also, an author co-citation technique is applied to represent intellectual structure on a two-dimensional map, which has been constructed by theory use of LIS authors fur 20 years.