• Title/Summary/Keyword: 열-구조해석

Search Result 1,125, Processing Time 0.029 seconds

Thermal Stress Analysis of the Disposal Canister for Spent PWR Nuclear Fuels (가압경수로 고준위폐기물 처분용기의 열응력 해석)

  • 권영주;하준용;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.471-480
    • /
    • 2002
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500 m underground is carried out for the basic design of the canister. Since the nuclear fuel disposal usually emits much heat, a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences the thermal load due to the heat generation of spent nuclear fuels in the basket. Hence, in this paper the thermal stress analysis is executed using the finite element method. The finite clement code Eot the analysis Is not written directly, but a commercial code, NISA, is used because of the complexity of the structure and the large number of elements required for the analysis. The analysis result shows that even though the thermal stress is added to the stress generated by the hydrostatic underground water pressure and the swelling pressure of the bentonite buffer, the total stress is still smaller than the yield stress of the cast iron. Hence, the canister is still structurally safe when the thermal loads we included in the external loads applied on the canister.

Design and static structural analysis of KSLV-I upper stage cowls (KSLV-I 상단부 카울 설계 및 구조 해석)

  • An, Jae-Mo;Kim, Kwang-Soo;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • KSLV-I which is being developed in KARI is composed with two stages, and adaptor ring is used for coupling stage. Cables for interconnecting between stage is exposed on the outside. Also 8 pyro bolts which are installed in adaptor ring are used for separation of stage. In general, cowl is used for protecting exposed parts or structure which are anxious about damage from outer environment. In KSLV-I, two kind of cowls are designed. The one is umbilical cowl, and the other is pyro bolt cowl. Because cowl is exposed on the outside, heat and pressure load developed from air have effect on cowls. Therefore verification of structural strength through static analysis is required. In this study, static analysis in load condition except heat load is accomplished. In result of analysis, structural strength of pyro bolt cowl is verified. But breakage of umbilical cowl is confirmed in pressure load condition. So design of umbilical cowl is modified for satisfying required structural strength. And structural strength of umbilical cowl through analysis is verified.

  • PDF

A Convergent Investigation on Structural Analysis with Thermal Stress at the Shape of Brake Disk for Racing Car (경주용 자동차 브레이크 디스크 형상에서의 열 응력 및 구조 해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.209-213
    • /
    • 2020
  • In this study, the model A with the existing shape used at racing car and the model B with light weight were designed. The structural analysis with thermal deformation and stress were carried out. Model A shows that the maximum temperature is lower than model B. The cooling performance due to the shape of the disk without any other cooling conditions can be shown to be better for model A. Model A was seen to be superior in durability as the thermal stress reduced by almost twice as much as model B. The part where the greatest stress occurred appeared to be the hole jointed with the hub regardless of its shape. The analysis results at this study are seen to be useful at designing the shape of the actual vehicle brake disc. The analysis results obtained in this study can be applied at grasping the strength of the brake disk for racing car practically. By utilizing the analysis result of the brake disk for racing car, this study is seen as the convergence study that the aesthetic design and analysis are applied.

Spacecraft Radiator Design Optimization Approach of Combining Optimization Algorithm with Thermal Analysis (최적화알고리즘과 열해석을 통합한 위성방열판 설계의 최적화 방법에 관한 연구)

  • Kim, Hui-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.24-29
    • /
    • 2013
  • A spacecraft radiator is a thermal control method to eject internally dissipated heat into the space generated from operation of unit boxes. The efficiency of thermal design may be improved by optimizing radiator design. In this paper, the optimization approach method of node-based radiator design was suggested which is to combine numerical thermal analysis with optimization algorithm. This method has meaning that it can be used practically to implement the spacecraft radiator design regardless of thermal analysis and optimization algorithm software and maintain the same basic concept of an ordinary radiator design approach based on node division of a thermal model. The overall analysis framework with thermal analysis and optimization algorithm would be presented.

Hydration heat analysis for mass concrete of reaction structure (반력구조체의 매스콘크리트 수화열 해석)

  • Hong, Seok-Beom;Kim, Woo-Jae;Lee, Jae-Sam;Park, Hee-Gon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.261-262
    • /
    • 2010
  • The Reaction structure in POSCO Global R&D center has to be investigated to minimize the crack especially by the hydration heat. In this study, several methods to control the hydration heat are suggested and the computational analysis of hydration heat is performed. The main variables are kinds of concrete, the interval of placement.

  • PDF

Optimal design and analysis of a Class IV Flextensional Transducer (Class IV Flextensional 트랜스듀서의 최적설계 및 특성해석)

  • Kang Kuk-jin;Roh Yongrae
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.311-314
    • /
    • 1999
  • 본 연구에서는 저주파 대역에서 고출력 수중 음향센서로 사용되는 Class IV Flextensional 트랜스듀서의 여러 설계변수들에 따른 음압 변화 및 열 발생 경향성을 유한요소 해석법으로 해석하였다. 나아가 해석되어진 결과를 바탕으로 최대 음압을 구현하고, 열 발생이 최소인 중심 주파수 1 kHz를 가지는 Class W Flextensional 트랜스듀서의 최적구조를 설정하였다. 본 연구에서 설정한 최적구조는 기본모델에 비해 음압이 2배 이상 크고, 열 발생은 아주 작은 것으로 나타났다. 본 연구의 결과는 향후 다양한 중심 주파수 및 최대 음압을 구현하고 열 발생이 최소인 Class W Flextensional 트랜스듀서를 설계함에 있어 유용한 자료로 활용될 수 있을 것이다.

  • PDF

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.

열접촉 저항의 이론적 해석

  • 김철주
    • Journal of the KSME
    • /
    • v.26 no.3
    • /
    • pp.200-203
    • /
    • 1986
  • 본 해설에서는 이론적 해석의 접근방법을 통하여 열접촉 저항의 기본적인 구조를 이해하는데 목적을 두었으며, 여러형태의 이론적 모델중에서 비교적 단순한 Cetinkale & Fishenden 의 연구 결과를 이용하여 이 모델에 포함된 각 인자들을 실제표면에 대해 어떻게 적용하는가를 검토하 였다.

  • PDF

THE ORBITAL THERMAL ANALYSIS OF HAUSAT-2 AND ITS THERMAL CONTROL SUBSYSTEM PRELIMINARY DESIGN (HAUSAT-2의 궤도 열해석과 열제어계의 예비설계)

  • Lee Mi-Hyeon;Kim Dong-Woon;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.129-132
    • /
    • 2005
  • This paper describes BAUSAT-2 orbital thermal analysis and preliminary design of thermal control subsystem. To design thermal control subsystem of HAUSAT-2, we have considered active & passive thermal control method based on basic theory and themal equilibrium equation. Using this result, suitable thermal control method and material have been selected. We have designed thermal control subsystem based on analysis of HAUSAT-2's thermal environments on sun synchronous orbit with altitude 650km, inclination $98^{\circ}$ and thermal distribution and range expectation of each HAUSAT-2's surface. Thermal analysis consists of system level, box level and board level analysis. We have completed system level and box level analysis. Till now, board level analysis of main heat dissipation board in progress. Thermal control subsystem has designed according to thermal analysis result. This design is to maintain all of the HAUSAT-2 components within the allowable temperature limits. In future, STM

  • PDF