• Title/Summary/Keyword: 열 복사열

Search Result 730, Processing Time 0.02 seconds

Influence factor analysis on the measurement of smoke density from floor materials in rolling stock (철도차량 바닥재 연기밀도 측정의 영향인자분석)

  • Kwon, Tae-Soon;Lee, Duck-Hee;Park, Won-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.629-634
    • /
    • 2016
  • In this study, we investigated the effect of factors that influence the measurement of smoke density using synthetic rubber flooring. The characteristics of rolling stock in an enclosed environment can cause enormous loss of life by smoke inhalation during fires inside passenger cars. The amount of smoke generation from interior materials for rolling stock is strictly restricted domestically and in other countries. Precise measurement of smoke density is therefore required to assess the fire performance of interior materials. Major factors that influence the measurement of smoke density include the uniformity of the specimen, the variations in conditions and instruments, and the operational and maintenance environment of the instruments. The contribution of factors was analyzed by estimating the uncertainty to investigate the contribution ratios of the major factors. The results show a contribution ratio of about 86% for the variation from the measurement of light transmission using a photomultiplier tube. Thus, this factor was the most representative for the measurement of smoke density. The contribution ratio of the other factors was low at about 11%, including irradiant flux conditions (${\pm}0.5 kW/m^2$) and the influence of the operational and maintenance environment of the instrument. These results were obtained using specimens with high uniformity.

Laboratory and Field Performance Evaluation of Acryl Resin Based Solar Radiation Reflective Pavement (아크릴 수지를 이용한 차열성 포장의 실내 및 현장 공용성 평가)

  • So, Kyung-Rock;Lee, Hyun-Jong;Baek, Jong-Eun;Lee, Sang-Yum
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.19-28
    • /
    • 2011
  • This study developed a solar radiation reflection pavement, so called a cool pavement, to lessen the urban heat island effect by coating a pavement surface with acrylic resins mixed with light-colored pigments. From a laboratory test, simulating solar heating process in pavements, the cool pavement reduced more than $12^{\circ}C$ of pavement temperature at $60^{\circ}C$ compared to a control porous pavement. With the increase of the mixing ratio of the pigments to acrylic resins, the temperature reduction effect increased, but its workability became worse due to higher viscosity. As a result, an appropriate mixing ratio was determined as 15%. The cool pavement had better durability than the control pavement: One quarter of Catabro loss and twofold dynamic stability. Its adhesion was also higher enough not to be debonded under traffic loading. In-situ noise and friction tests conducted in two field sites showed that the cool pavement reduced its noise level by 3.7dB in average and increased its friction level by 30% compared to the control pavement. The permeability of the cool pavement was little lower than the control pavement, but higher enough to satisfy the minimum requirement for porous pavements.

A Fundamental Study for Design of Electric Energy Harvesting Device using PZT on the Road (도로용 압전발전체 시험모듈 설계를 위한 기초 실험 연구)

  • Lee, Jae-Jun;Ryu, Seung-Ki;Moon, Hak-Yong;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.159-166
    • /
    • 2011
  • Green house gas emissions are increasing as development of the industrial economy of the international community. Many countries in the world are endeavoring to reduce green house gas emissions under severe climate change. In order to protect grobal warming, government is trying to reduce green gas emissions under "Low Carbon Green Growth Policy" and investing climiate-firendly industries such as renewable energy harvesting. Renewable energy has been rapidly developing as a result of investment for development technology of using natural energy such as solar, wind, tidal, etc. There are lots of waste energy in the road space. However, nobody is not interested in waste energy from the road space. This paper present a fundamentally experimental study of energy harvesting technique to use waste energy in the road. The waste energy in the road is covered a pressure and impact of vehicles on the road, the radiant heat from asphalt pavement, road noise and vibration etc. In this study, an energy harvesting device using piezoelectric element is proposed and various tests are conducted to investigate a characteristic of this device as function of impact loading based on piezoelectric effect behavior. This paper shows the energy harvesting results of the device using domestic piezoelectirc element as a function of impact load size and pavement types.

Characteristics of Beam-tilting Slot Array Waveguide Antennas for DBS Reception (DBS 수신용 빔 틸트형 슬롯 어레이 도파관 안테나의 특성)

  • Min, Gyeong-Sik;Kim, Dong-Cheol;Arai, Hiroyuki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.140-149
    • /
    • 2002
  • This paper describes the characteristics of beam-tilting slot away waveguide antennas for mobile DBS reception. As a basic study of slotted waveguide array, design for 16 slot elements located on a broad-wall waveguide is considered. Design parameters such as slot length, space between each slot and cross slot angle of antennas with the beam-tilting characteristics are calculated by method of moments. Based on these results, the radiation waveguide antennas with 16-element $\times$16-array are designed and fabricated. The measured main beam direction angles of the fabricated antennas are 48$^{\circ}$to 50$^{\circ}$depending on the measured frequencies and it shows good agreement with prediction. The measured 3 dB beam width of elevation pattern is about 13$^{\circ}$, and the axial ratio and the gain measured at DBS band are observed 2.8 dB below and 24 dBi above, respectively. In order to evaluate a performance of the fabricated waveguide planar antenna, it is combined with the satellite tracking control system and the field performance test of antenna mounted on a mobile vehicle is carried out at highway. During the measurement, it was possible to watch television without a break signal in a driving vehicle and an excellent performance of the proposed antennas was demonstrated.

Seasonal Variation of Surface heat budget and Wind Stress Over the Seas Around the Korean Peninsula (한반도주위 해양에서 의 해면 열수지와 응력의 계절변화)

  • 강인식;김맹기
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.325-337
    • /
    • 1994
  • The distributions of heat and momentum fluxes on the surface over the oceans around the Korean Peninsula are obtained based on the surface-layer flux model of Kim and Kang (1994), and their seasonal variations are examined in the present study. the input data of the model is the oceanatmosphere data with a grid interval of 2$^{\circ}$ in longitude and latitude. The atmosphere data, which are the pressure, temperature, and specific humidity on the 1000 mb level for 3 year period of 1985∼1987, are obtained from the European center for Medium Range Forecast. The sea surface temperature (SST) is obtained from National Meteorological Center (NMC). The solar insolation and longwave radiation on the ocean surface are obtained, respectively, from the NASA satellite data and based on an emprical formula. It is shown from the net heat flux that the oceans near Korea lose heat to the atmosphere in January and October with the rates of 200∼ 400 Wm/SUP -2/ and 100 Wm/SUP -2/, respectively. But the oceans are heated by the atmosphere in April and July with about the same rate of 100 Wm/SUP -2/. The annualmean net heat flux is negative over the entire domain except the northern part of the Yellow Sea. The largest annual-mean cooling rate of about 120 Wm/SUP -2/ is appeared off the southwest of Japan. In the East Sea, the annual-mean cooling rate is 60∼90 Wm/SUP -2/ in the southern and northern parts and about 30 Wm/SUP -2/ in the middle part. The magnitude of wind stress in january is 3∼ 5 times bigger than those of the other months. As a result, the spatial pattern of annual-mean wind stress is similar to that of January. It is also shown that the annual-mean wind stress curl is negative. in the East China Sea and the South Sea,but it is positive in the northern part of the Yellow Sea.In the East sea,the stress curl is positive in the southeast and northern parts and negative in the northwestern part.

  • PDF

Comparison of Evapotranspiration Estimation Approaches Considering Grass Reference Crop (증발산 산정 방법들의 비교 - 잔디기준작물을 중심으로)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.212-228
    • /
    • 2008
  • Five representative reference evapotranspiration(RET) equations were selected, and these equations were compared with pan evaporation by correlation analysis. Pan coefficients were also estimated. Furthermore, five selected RET equations were compared to find the similarity among those at the 21 meteorological stations located in South Korea. Five RET equations selected from 4 different category were Penman(combination approach), FAO Penman-Monteith(FAO P-M) (single source approach), Makkink and Priestley-Taylor (radiation approach) and Hargreaves(temperature approach) equations. In this study, the geographical and topographical conditions were considered for the selection of study stations. The daily meteorological data measured from 1970 at an interval of 5 years were applied in this study. The evapotranspiration estimates obtained by applying evapotranspiration equations were evaluated with numerical and graphical methods. The correlation coefficients between pan evaporation and RET in study stations were above 0.9 indicating very high correlation; however, the slopes of the individual regression lines show the values greater or less than 1.0. Hargreaves equation(temperature approach) shows the most similar evapotranspiration estimates to those of FAO P-M equation from 12 study stations, which are located near to seashore except Daegu station. On the other hand, Priestley-Taylor equation(radiation approach) shows the most similar evapotranspiration estimates to those of FAO P-M equation from 8 study stations, which are located in inland.

Experimental Study on Interaction of Water Sprayed Curtain on Hot Surface of a Window Glass and its Effects on Glass Surface Temperature in Room Fires (구획화재 시 국부복사열에 노출된 유리면의 수막접촉에 따른 급냉파열특성 관한 실험적 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.124-130
    • /
    • 2003
  • This research focuses on analysis of a interaction fracture of various glasses due to contact of water sprayed curtain on hot glass surface with high temperature produced from convective heat source near glass wall. A large scaled experimental test was done in order to find the range of the glass surface temperature to be able to cause the breakage of the glasses when water droplets reach on the hot surface. This paper shows the allowable temperature of the glass surface for prevention of the cooling down breakage before water curtain droplets contact the surface. Allowable Temperature if $250^{\circ}C$ for the tempered glass but general glass is very relatively low. Therefore if the water curtain spray system was adequately activated by a thermal detector installed below ceiling adjacent glass wall with water curtain nozzle system, all hot glass would not break out by cooling water droplet's contact on the hot surface due to convective heat released by adjacent fire source near the glass wall.

A Study of Damage Assessment Caused by Hydrogen Gas Leak in Tube Trailer Storage Facilities (수소 Tube Trailer 저장시설에서의 수소가스 누출에 따른 사고피해예측에 관한 연구)

  • Kim, Jong-Rak;Hwang, Seong-Min;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.32-38
    • /
    • 2011
  • As the using rate of an explosive gas has been increased in the industrial site, the regional residents adjacent to the site as well as the site workers have frequently fallen into a dangerous situation. Damage caused by accident in the process using hydrogen gas is not confined only to the relevant process, but also is linked to a large scale of fire or explosion and it bring about heavy casualties. Therefore, personnel in charge should investigate the kinds and causes of the accident, forecast the scale of damage and also, shall establish and manage safety countermeasures. We, in Anti-Calamity Research Center, forecasted the scope of danger if break out a fire or/and explosion in hydrogen gas facilities of MLCC firing process. We selected piping leak accident, which is the most frequent accident case based on an actual analysis of accident data occurred. We select and apply piping leak accident which is the most frequent case based on an actual accident data as a model of damage forecasting scenario caused by accident. A jet fire breaks out if hydrogen gas leaks through pipe size of 10 mm ${\Phi}$ under pressure of 120 bar, and in case of $4kw/m^2$ of radiation level, the radiation heat can produce an effect on up to distance of maximum 12.45 meter. Herein, we are going to recommend safety security and countermeasures for improvement through forecasting of accident damages.

A Study on the Risk Assessment of River Crossing Pipeline in Urban Area (도심지 하천매설배관의 위험성 평가에 관한 연구)

  • Park, Woo-Il;Yoo, Chul-Hee;Shin, Dong-Il;Kim, Tae-Ok;Lee, Hyo-Ryeol
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.22-28
    • /
    • 2020
  • In this study, quantitative risk assessment was carried out for city gas high-pressure pipelines crossing through urban rivers. The risk assessment was performed based on actual city gas properties, traffic volume and population and weather data in the worst case scenario conditions. The results confirmed that the social and individual risks were located in conditionally acceptable areas. This can be judged to be safer considering that the risk mitigation effect of protecting the pipes or installing them in the protective structure at the time of the construction of the river buried pipe is not reflected in the result of the risk assessment. Also, SAFETI v8.22 was used to analyze the effects of wind speed and pasquil stability on the accident damage and dispersion distances caused by radiation. As a result of the risk assessment, the safety of the pipelines has been secured to date, but suggests ways to improve safety by preventing unexpected accidents including river bed changes through periodic inspections and monitoring.

The Study on the Quantitative Analysis in LPG Tank's Fire and Explosion (LPG 저장탱크에서의 화재$\cdot$폭발에 관한 정량적 영향 평가에 관한 연구)

  • Bae Sung-Jin;Kim Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 1999
  • Chemical plant's fire and explosion does not only damage to the chemical plants themselves but also damage to people in or near of the accident spot and the neighborhood of chemical plant. For that reason, Chemical process safety management has become important. One of safety management methods is called 'the quantitative analysis', which is used to reduce and prevent the accident. The results of the quantitative analysis could be used to arrange the equipments, evaluate the minimum safety distance, prepare the safety equipments. In this study we make the computer program to make easy to do Quantitative analysis of the accident. The output of the computer program is the magnitude of fire(pool fire and fireball) and explosion(UVCE and BLEVE) effects. We used the thermal radiation as a measure of fire magnitude and used the overpressure as a measure of explosion magnitude. In case of BLEVE, the fly distance of fragment can be evaluated. Also probit analysis was done in every case. As the case study, Buchun LPG explosion accident in Korea was analysed by the program developed. The simulation results showed that the permissible distance was 800m and probit analysis showed that 1st degree bum, 2nd degree burn, and death distances are 450, 280, 260m, respectively the simulation results showed the good agreement with the results from SAFER PROGRAM made by Dupont.

  • PDF