• Title/Summary/Keyword: 열환경 평가

Search Result 930, Processing Time 0.03 seconds

Effect of Design Value Selection on Heating and Cooling Load Calculation in Greenhouses (설계 변수 선택이 온실의 냉난방부하 산정에 미치는 영향)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.277-284
    • /
    • 2018
  • For the main variables to be selected by the designer for the heating and cooling load calculation in greenhouses, in order to evaluate the effect of these design values on the heating and cooling load, the simulations were carried out by varying the respective design values. Based on these results, we proposed the design values which should pay special attention to selection. The design values which have the greatest effect on the heating load were the overall heat transfer coefficient of the covering material and the design outdoor temperature was next. The effect of the design values according to the number of spans showed little difference. In the case of the single-span greenhouse, the effect of the design values related to the underground heat transfer can not be ignored. However, in the case of the multi-span greenhouse, the effect of the design values related to the underground heat transfer and the infiltration rate were insignificant. The design values which have the greatest effect on the cooling load were the solar radiation into the greenhouse and the evapotranspiration coefficient, followed by the indoor and outdoor temperature difference and the ventilation rate. The effect of the design values showed a great difference between the single-span greenhouse and the multi-span greenhouse, but there was almost no difference according to the number of spans. The effect of the overall heat transfer coefficient of the covering material was negligible in both the single-span greenhouse and the multi-span greenhouse. However, the effect of the indoor and outdoor temperature difference and the ventilation rate on the cooling load was not negligible. Especially, it is considered that the effect is larger in multi-span greenhouse.

Monitoring of a Time-series of Land Subsidence in Mexico City Using Space-based Synthetic Aperture Radar Observations (인공위성 영상레이더를 이용한 멕시코시티 시계열 지반침하 관측)

  • Ju, Jeongheon;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1657-1667
    • /
    • 2021
  • Anthropogenic activities and natural processes have been causes of land subsidence which is sudden sinking or gradual settlement of the earth's solid surface. Mexico City, the capital of Mexico, is one of the most severe land subsidence areas which are resulted from excessive groundwater extraction. Because groundwater is the primary water resource occupies almost 70% of total water usage in the city. Traditional terrestrial observations like the Global Navigation Satellite System (GNSS) or leveling survey have been preferred to measure land subsidence accurately. Although the GNSS observations have highly accurate information of the surfaces' displacement with a very high temporal resolution, it has often been limited due to its sparse spatial resolution and highly time-consuming and high cost. However, space-based synthetic aperture radar (SAR) interferometry has been widely used as a powerful tool to monitor surfaces' displacement with high spatial resolution and high accuracy from mm to cm-scale, regardless of day-or-night and weather conditions. In this paper, advanced interferometric approaches have been applied to get a time-series of land subsidence of Mexico City using four-year-long twenty ALOS PALSAR L-band observations acquired from Feb-11, 2007 to Feb-22, 2011. We utilized persistent scatterer interferometry (PSI) and small baseline subset (SBAS) techniques to suppress atmospheric artifacts and topography errors. The results show that the maximum subsidence rates of the PSI and SBAS method were -29.5 cm/year and -27.0 cm/year, respectively. In addition, we discuss the different subsidence rates where the study area is discriminated into three districts according to distinctive geotechnical characteristics. The significant subsidence rate occurred in the lacustrine sediments with higher compressibility than harder bedrock.

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects (미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석)

  • Son, Kirak;Kim, Sungtae;Kim, Cheol;Kim, Gahui;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/㎡, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/Cu sample, measured Gc value of the DCB test was lower than 5 J/㎡. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/㎡, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.

Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring (장기 모니터링 환경에서 센서 패키징 방법에 따른 광섬유 센서의 신호 안정성 평가)

  • Kang, Donghoon;Kim, Heon-Young;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are applied in structural health monitoring (SHM) in various application fields because of their ease of multiplexing and capability of performing absolute measurements. Moreover, the packaging methods of FBG sensors accelerate their commercialization rapidly. However, long-term SHM exposes the FBG sensors to cyclic thermal loads, and a investigation is required because it finally leads to the signal instability of the FBG sensors. In this study, the effects of sensor packaging methods two methods are generally used for the FBGs: (bonding both sides of the FBG or bonding the FBG directly on signal stability of FBG sensors are investigated. Tests are conducted on specimens in a thermal chamber, over a temperature range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Signal characteristics such as Bragg wavelength, light intensity and full width at half maximum are examined and are compared with those of the FBG sensors, obtained in a previous study under direct bonding conditions. From the comparison, it is observed that the FBG sensors with bonding on both sides of the FBG demonstrate higher signal stabilities when exposed to cyclic thermal loads during long-term SHM. Consequently, it guarantees more effectiveness when packaging the FBG sensors.

Estimation of Heat Insulation and Light Transmission Performance According to Covering Methods of Plastic Greenhouses (플라스틱온실의 피복방식에 따른 보온 및 광투과 성능 평가)

  • Lee, Hyun-Woo;Kim, Young-Shik;Sim, Sang-Youn;Lee, Jong-Won;Diop, Souleymane
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.270-278
    • /
    • 2013
  • The objective of the present study is to provide data needed to decide covering method to be able to increase the thermal insulation and light transmittance efficiency of commercial greenhouse. The thermal insulation effect, PPF transmittance and quantity of condensation water were estimated in experimental tomato greenhouses covered with three types of coverings of single layer, air inflated and conventional double layers covering. The overall heat flow of air inflated double layers greenhouse was similar to that of conventional double layers greenhouse, but the temperature between covering material and thermal screen in air inflated double layers greenhouse was lower than that in conventional double layers greenhouse at the same outside temperature condition due to air leakage through the gap of roof vent. The overall heat transfer coefficients acquired by experiment that was performed in single layer and conventional double layers greenhouses were close to those obtained from model experiment. Even though the PPF transmittance of air inflated double layers greenhouse was lower than that of single layer greenhouse, which was greater than that of conventional double layers greenhouse. The quantity of condensation water on covering surface of single layer greenhouse was greater than that of air inflated double layers greenhouse due to lower covering surface temperature.

Influence factor analysis on the measurement of smoke density from floor materials in rolling stock (철도차량 바닥재 연기밀도 측정의 영향인자분석)

  • Kwon, Tae-Soon;Lee, Duck-Hee;Park, Won-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.629-634
    • /
    • 2016
  • In this study, we investigated the effect of factors that influence the measurement of smoke density using synthetic rubber flooring. The characteristics of rolling stock in an enclosed environment can cause enormous loss of life by smoke inhalation during fires inside passenger cars. The amount of smoke generation from interior materials for rolling stock is strictly restricted domestically and in other countries. Precise measurement of smoke density is therefore required to assess the fire performance of interior materials. Major factors that influence the measurement of smoke density include the uniformity of the specimen, the variations in conditions and instruments, and the operational and maintenance environment of the instruments. The contribution of factors was analyzed by estimating the uncertainty to investigate the contribution ratios of the major factors. The results show a contribution ratio of about 86% for the variation from the measurement of light transmission using a photomultiplier tube. Thus, this factor was the most representative for the measurement of smoke density. The contribution ratio of the other factors was low at about 11%, including irradiant flux conditions (${\pm}0.5 kW/m^2$) and the influence of the operational and maintenance environment of the instrument. These results were obtained using specimens with high uniformity.

금 나노로드 어레이 박막을 이용한 광학형 바이오 센서 개발

  • Yeom, Se-Hyeok;Lee, Dong-Ik;Sin, Han-Jae;Seo, Chang-Taek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.436-436
    • /
    • 2014
  • 본 연구에서는 전 세계적으로 활발히 연구되고 있는 나노바이오센서 분야 중 가장 주목을 받고 있는 LSPR 원리를 이용한 바이오센서를 제작하였다. 금속 나노입자의 국소 표면 플라즈몬 공명현상에 의한 주위환경에 민감하게 반응하는 특성은 고감도 광학형 바이오센서, 화학물질 검출 센서등에 응용된다. 특히 금 나노막대와 같은 1차 나노구조물은 나노막대의 주변 환경 변화에 따라 뚜렷한 플라즈몬 흡수 밴드 변화를 나타냄으로 센서로 적용 했을 때 고감도의 측정이 가능하다. 본 연구에서는 다공성인 알루미늄 양극산화 박막 주형틀을 이용하여 다양한 종횡비를 가지는 금 나노막대를 합성하고, 나노막대 어레이 형태의 박막을 제작하였다. 금 나노막대의 합성은 알루미늄 양극산화막을 사용한 주형제조 방법(template method)을 사용하는 전기화학 증착법을 사용하였다. 우선 부도체인 알루미늄 양극 산화막의 한쪽면을 열증착 장비를 사용하여 금을 증착하여 작업 전극(working electrode)을 형성하였다. 백금 선(platinum wire)을 보조 전극(counter electrode)으로 사용하고 Ag/AgCl 전극을 기준 전극(reference electrode)으로 사용하여 삼전극계(three-electrode system)를 형성하였으며, 금 도금 용액(orotemp 24 gold plating solution, TECHNIC INC.)을 사용하여, 800 mV 전압에서 금 나노 막대를 합성하였다. 금 나노막대의 길이는 테플론 챔버를 통과한 전하량 또는 전기 증착 시간에 비례하여 결정된다. 금 나노막대를 성장시킨 알루미늄 양극산화막을 실리콘 웨이퍼에 은 페이스트를 사용하여 고정시킨 후 수산화나트륨 (NaOH)용액을 사용하여 알루미늄 양극산화막을 녹여내어 수직방향으로 정렬되어 있는 나노 막대 어레이 박막을 제조 하였다. 또한 제작된 금 나노막대 어레이의 광학적 특성을 평가하였다. 본 연구에서와 같이 나노막대를 직경방향으로 측정할 경우, 직경방향의 transverse mode만 측정된다. 금 나노 막대가 알루미늄 양극산화막 안에 포함된 상태로 측정된 금 나노로드 어레이 박막의 광 스펙트럼 분포는 금 나노막대의 가시광영역에서의 흡수 스펙트럼을 측정하였을시 직경 및 길이에 따라 transverse mode의 ${\lambda}$ max (최대 흡광)의 위치가 변화됨을 나타낸다. 실험 결과를 바탕으로 나노막대의 종횡비가 증가함에 따라 흡수 스펙트럼의 transverse mode ${\lambda}$ max가 미약하게 단파장 영역으로 이동하는 것을 확인할 수 있다. 이러한 결과는 원기둥 형태의 금 나노막대의 흡수 스펙트럼에 대한 이론적인 예측과 부합한다. 바이오센서로의 적용 가능성을 확인하기 위하여 자기조립단분자막을 형성하여 항체를 고정하고 CRP에 대한 응답특성을 평가하였다. CRP 항원-항체의 면역반응에 대한 실험 결과 CRP 항원의 농도가 증가함에 따라 넓은 측정범위에서 선형적으로 흡광도가 증가하는 결과를 나타내었으며, CRP 10 fg/ml의 농도까지 검출할 수 있었다. 센서의 선택성을 확인하기 위하여 감지하고자하는 대상물질이 아닌 Tn T 항원을 감지막에 반응시켜 흡광도 변화를 분석하였다. 결과적으로 제작된 센서칩은 선택성을 가지고 측정하고자하는 물질에만 반응함을 확인하였다. 이러한 결과는 다양한 직경을 사용한 부가적인 LSPR현상의 연구에 활용될 수 있을 것이다.

  • PDF

A Study on Groundwater Flow Modeling in the Fluvial Aquifer Adjacent to the Nakdong River, Book-Myeon Area, Changwon City (창원시 북면 낙동강 주변 하성퇴적층의 지하수유동 모델링 연구)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Hyoung-Su;Hahn Jeong-Sang;Ryu Su-Hee
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.499-508
    • /
    • 2004
  • Changwon City first constructed riverbank filtration plants in Book-Myeon and Daesan-Myeon in Korea in the year 2001. This study evaluated hydrogeological characteristics and groundwater flow simulation between the Nakdong River and the fluvial aquifers adjacent to the river in Book-Myeon, Changwon City. The groundwater simulation calculated the influx rate from the Nakdong River and the fluvial aquifers to pumping wells through the riverbank filtration system. The groundwater flow model utilized drilling, grain size analysis, pumping test, groundwater level measurements, river water discharge and rainfall data. Hydraulic heads calculated by the steady-state model closely matched measured heads in pumping and observation wells. According to the transient flow model, using a total pumping amount of 14,000 $m^3$/day, the flux into the pumping wells from the Nakdong River accounts for 8,390 $m^3$/day (60%), 590 $m^3$/day (4%) is from the aquifer in the rectilinea. direction to the Nakdong River, and 5,020 $m^3$/day (36%) is from the aquifer in the parallel direction to the Nakdong River. The particle tracking analysis shows that a particle from the Nakdong River moves toward the pumping wells at a rate of about 1.85 m/day and a particle from the aquifer moves toward the pumping wells at a rate of about 0.75 m/day. This study contributes to surface water/groundwater management modeling, and helps in understanding, how seasonal change affects pumping rates, water quality, and natural recharge.

Spatial-temporal Variations of Nitrate Levels in Groundwater of Jeju Island, Korea: Evaluation of Long-term (1993-2015) Monitoring Data (제주도 지하수질산염 농도의 시·공간적변화 특성: 장기(1993-2015) 모니터링 자료의 평가)

  • Kim, Ho-Rim;Oh, Junseop;Do, Hyun-Kwon;Lee, Kyung-Jin;Hyun, Ik-Hyun;Oh, Sang-Sil;Kam, Sang-Kyu;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.15-26
    • /
    • 2018
  • The spatio-temporal variations of nitrate concentrations in groundwater of Jeju Island were evaluated by an analysis of time series groundwater quality data (N = 21,568) that were collected from regional groundwater monitoring (number of wells = 4,835) for up to 20 years between 1993 and 2015. The median concentration of $NO_3-N$ is 2.5 mg/L, which is slightly higher than those reported from regional surveys in other countries. Nitrate concentrations of groundwater in wells tend to significantly vary according to different water usage (of the well), administrative districts, and topographic elevations: nitrate level is higher in low-lying agricultural and residential areas than those in high mountainous areas. The Mann-Kendall trend test and Sen's slope analysis show that nitrate concentration in mid-mountainous areas tends to increase, possibly due to the expansion of agricultural areas toward highland. On the other hand, nitrate concentrations in the Specially Designated Groundwater Quality Protection Zones show the temporally decreasing trend, which implies the efficiency of groundwater management actions in Jeju. Proper measures for sustainable groundwater quality management are suggested in this study.

Analysis of Thermal Performance of Ardisia Species Used for Improvement of Indoor Environment (실내환경 개선을 위한 Ardisia속 식물의 열 성능 평가)

  • Lee, Na Young;Han, Seung Won;Joo, Na Ri;Lee, Jong Suk
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • This study investigated the changes of indoor thermal environment by Ardisia species planted in indoor space. Three Ardisia species (Ardisia japonica, Ardisia crenata and Ardisia pusilla) were used in this study and differences of temperature and relative humidity were ascertained in an empty chamber with and without plants. In high temperatures over $24^{\circ}C$, Ardisia species cooled down chamber more as compared to the control without plants, but there were no significant differences among Ardisia species. Ardisia crenata showed high relative humidity of $57.3{\pm}3.1%$ during most of the day time and $60.8{\pm}2.5%$ at low temperatures. However, Ardisia japonica and Ardisia pusilla showed $54.7{\pm}1.18%$ and $52.5{\pm}2.4%$, respectively, on the average, and they maintained comfortable relative humidity during most of the day time. When the setting temperature was decreased from 28 to $26^{\circ}C$, Ardisia species showed 7.5~13.6 times greater cooling efficiency as compared to the control without plants, and at low temperatures the chamber without plants showed higher themal energy than the chamber with plants. Ardisia species were effective on cooling down the temperature at high temperatures and they showed a tendency to maintain proper temperatures at low temperatures.