DOI QR코드

DOI QR Code

Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring

장기 모니터링 환경에서 센서 패키징 방법에 따른 광섬유 센서의 신호 안정성 평가

  • 강동훈 (한국철도기술연구원 첨단소재연구팀) ;
  • 김헌영 (한국철도기술연구원 첨단소재연구팀) ;
  • 김대현 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2016.07.29
  • Accepted : 2016.08.17
  • Published : 2016.08.30

Abstract

Fiber Bragg grating (FBG) sensors are applied in structural health monitoring (SHM) in various application fields because of their ease of multiplexing and capability of performing absolute measurements. Moreover, the packaging methods of FBG sensors accelerate their commercialization rapidly. However, long-term SHM exposes the FBG sensors to cyclic thermal loads, and a investigation is required because it finally leads to the signal instability of the FBG sensors. In this study, the effects of sensor packaging methods two methods are generally used for the FBGs: (bonding both sides of the FBG or bonding the FBG directly on signal stability of FBG sensors are investigated. Tests are conducted on specimens in a thermal chamber, over a temperature range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Signal characteristics such as Bragg wavelength, light intensity and full width at half maximum are examined and are compared with those of the FBG sensors, obtained in a previous study under direct bonding conditions. From the comparison, it is observed that the FBG sensors with bonding on both sides of the FBG demonstrate higher signal stabilities when exposed to cyclic thermal loads during long-term SHM. Consequently, it guarantees more effectiveness when packaging the FBG sensors.

다중화와 절대측정이 가능한 광섬유 브래그 격자(FBG) 센서는 다양한 분야의 건전성 모니터링에 활용되고 있으며, 패키징을 통한 빠른 상용화가 진행 중이다. 하지만, 장시간 구조 건전성 모니터링시 FBG 센서는 반복 열하중에 노출되며 이는 센서의 신호 안정성에 영향을 줄 수 있어 면밀한 검토가 필요하다. 본 연구에서는 일반적으로 사용되는 FBG 센서의 브래그 격자 부분에 대한 두 가지 패키징 방법(양단 접착, 직접 접착)에 대해 반복 열하중이 신호 안정성에 미치는 영향을 고찰하였다. 구체적으로, $-20^{\circ}C{\sim}60^{\circ}C$의 온도 조건에서 300사이클 동안 FBG 센서의 브래그 파장, 광 강도값, 반너비값 등의 신호 특성을 관찰하였으며 직접 접착에 대해 수행한 선행 연구와의 비교를 통해 두 가지 패키징 방법에 대한 신호 안정성을 평가하였다. 시험 결과, 장기간 반복 열하중이 가해지는 환경에 노출된 FBG 센서의 경우 양단 접착이 직접 접착보다 신호 안정성이 더 높기 때문에 FBG 센서의 패키징시 양단 접착 방식이 더 효과적임을 확인하였다.

Keywords

References

  1. J. B. Ihn and F. K. Chang, "Pitch-catch active sensing methods in structural health monitoring for aircraft structures," Structural Health Monitoring, Vol. 7, No. 1, pp. 5-19 (2008) https://doi.org/10.1177/1475921707081979
  2. J. H. Lee, D. H. Kim and I. K. Park, "Application of a fiber Fabry-Perot interferometer sensor for receiving SH-EMAT signals," Journal of the Korean Society for Nondestructive Testing, Vol. 34, No. 2, pp. 165-170 (2014) https://doi.org/10.7779/JKSNT.2014.34.2.165
  3. K. A. Kwon, M. Y. Choi, H. S. Park, J. H. Park, Y. H. Huh and W. J. Choi, "Quantitative defects detection in wind turbine blade using optical infrared thermography," Journal of the Korean Society for Non- destructive Testing, Vol. 35, No. 1, pp. 25-30 (2015) https://doi.org/10.7779/JKSNT.2015.35.1.25
  4. H. Y. Kim and D. H. Kim, "Sensor system for multi-point monitoring using bending loss of single mode optical fiber," Journal of the Korean Society for Nondestructive Testing, Vol. 35, No. 1, pp. 39-45 (2015) https://doi.org/10.7779/JKSNT.2015.35.1.39
  5. W. Chung and D. Kang, "Full-scale test of a concrete box girder using FBG sensing system," Engineering Structures, Vol. 30, No. 3, pp. 643-652 (2008) https://doi.org/10.1016/j.engstruct.2007.05.003
  6. D. Kang, D. H. Kim and S. Jang, "Design and development of structural health monitoring system for smart railroad-gauge-facility using FBG sensors," Experimental Techniques, Vol. 38, No. 5, pp. 39-47 (2014) https://doi.org/10.1111/j.1747-1567.2012.00844.x
  7. A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte and A. Depre, "Optical fiber sensors embedded into medical textiles for healthcare monitoring," IEEE Sensors Journal, Vol. 8, No. 7, pp. 1215-1222 (2008) https://doi.org/10.1109/JSEN.2008.926518
  8. D. H. Kang, C. U. Kim and C. G. Kim, "The embedment of fiber Bragg grating sensors into filament wound pressure tanks considering multiplexing," NDT&E International, Vol. 39, pp. 109-116 (2006) https://doi.org/10.1016/j.ndteint.2005.07.013
  9. D. Kang, H. Y. Kim and D. H. Kim, "Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures," Smart Materials and Structures, Vol. 23, No. 7, pp. 074012 (2014) https://doi.org/10.1088/0964-1726/23/7/074012
  10. D. Kang, H. Y. Kim, D. H. Kim and S. Park, "Thermal characteristics of FBG sensors at cryogenic temperatures for structural health monitoring," International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 1, pp. 5-9 (2016) https://doi.org/10.1007/s12541-016-0001-4
  11. H. Y. Kim, D. Kang and D. H. Kim, "Reliability evaluation of fiber optic sensors exposed to cyclic thermal load," Journal of the Korean Society for Nondestructive Testing, Vol. 36, No. 3, pp. 225-230 (2016) https://doi.org/10.7779/JKSNT.2016.36.3.225
  12. A. Mita and I. Yokol, "Fiber Bragg grating accelerometer for structural health monitoring," 5th International Conference on Motion and Vibration Control (MOVIC 2000), Sydney, Australia (2000)
  13. Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang and I. Bennion, "In-fiber Bragg-grating temperature sensor system for medical applications," Journal of Lightwave Technology, Vol. 15, No. 5, pp. 779-785 (1997) https://doi.org/10.1109/50.580812