• Title/Summary/Keyword: 열화상태

Search Result 548, Processing Time 0.03 seconds

A Study on the melting Characteristics of Fuse Element by Repeating Overcurrent (반복과전류에 의한 퓨즈 엘리먼트의 용단특성에 관한 연구)

  • Kim, Youn-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.120-126
    • /
    • 2010
  • This paper propose analysis and examination of the melting characteristic of fuse elements by repeating overcurrent as a depletion factor of high pressure current limiting fuse through test following existence and nonexistence of extinction material and various configuration of elements. To examine deterioration progress rate by repeating overcurrent we analyzed heat for various element notching configuration, designed plate type, ring type element and estimated the relationship with life span by analyzing breaking characteristic through repeating overcurrent test with adjusting load factor at Silicon Dioxide(SiO2) filled state or in air. A Crack by repeat stress, decrease of section and transformation by friction with extinction material by repeating overcurrent causes a problem which shortens life span based on fuse repeating frequency. Since the contents of this paper might be useful to research the correlation between friction of materials and repeating life span based on load factor of repeating current, the quality of product would be improved through solution of the problem.

Dimensional Change of PEG-Freeze Dried Waterlogged Woods Exposed at Various Humidity Conditions (PEG처리 후 동결건조한 수침고목재의 습도조건에 따른 상태변화)

  • Kim, Soo-Chul;Park, Won-Kyu;Yi, Yong-Hee
    • Journal of Conservation Science
    • /
    • v.16 s.16
    • /
    • pp.110-118
    • /
    • 2004
  • In order to evaluate two-step treatment of PEG-freeze drying for highly-degraded waterlogged ash woods (Fraxinus PP.; ca. 5,700 BP), which were excavated from peat lands in western Korea, dimension stability was examined during 45 months after complete treatment. The samples pre-treated with PEG in water solution showed better dimensional stabilities than the ones with PEG in t-butanol(TBA) solution. It suggests that TBA reduced the flexibility of wood cells and overflying by TBA induced micro-checks during freeze drying. Micro-checks results in fragile wood structures and consequently, large shrinkage by moisture absorbances of high PEG contents during exposure in humid condition. The results suggest that PEG in water-solution treatment is better than PEG in t-butanol as pretreament for freeze drying of highly-degraded waterlogged ash woods.

  • PDF

Design of Measuring System for Insulation Resistance and Humidity in High-Power XLPE Cables in Operation and the Relationship Between Insulation Resistance and Humidity in the Oversheath (운전 중인 고전력 XLPE 케이블의 절연저항과 습도의 측정 시스템 설계 및 방식층 절연저항과 습도의 상관관계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.179-184
    • /
    • 2016
  • The usual way used by electric power stations to deliver high levels of generated power is via 6.6kV XLPE (or CV) cables. Depending on the manufacturing technique, installation environment, and usage conditions, the deterioration processes of the power cables start from the instant of operation. Cable junctions may break down in three years from the start of operation due to the manufacturing or construction defects. Otherwise they should be in good working order for 20-30 years. When the cable system (the cable itself and cable junctions combined) deteriorates, fire accidents happen due to the dielectric breakdowns. We have invented a device to monitor the deteriorating status of cables at Korean Western Power Co. Ltd. located in Taean, Chungcheongnam-do province. In this paper, we introduce the device hardware. Using the device, we have measured the insulation resistance and humidity in the sheath of the cables. We present, in analysed results, the effect of humidity on insulation resistance in cable sheaths.

Comparison and Examination of the Measured Data With the Data from Other Company for the Conductor and Sheath Temperatures of Live 6 kV CV Single Core Cables (활선 6 kV CV 단심 케이블의 도체 및 표면온도 측정 데이터에 관한 타사 데이터와의 비교검토)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.197-201
    • /
    • 2017
  • The demand for electric power is increasing every year in Korea. All the systems adopted at power stations in order to generate and transmit electric power should operate in perfect condition or reliability. The device for transmitting the generated high-voltage electric power is 6 kV CV single core cables. The manufacturing companies of the cables makes an official announcement that the operating lifetime of their cables is about 30years. But from the moment of operation the deterioration precesses of worsening the characteristics of cables starts. Since the reliability for the status of installed cables in deterioration has not been diagnosed, the cables can be broken at any unexpected moments. In order to prevent the abrupt cable accident by systematically monitoring the cable status, we have invented the first device in Korea. We have installed our device at Korea Western Power Co. Ltd. in order to diagnose the live cables. In this paper, we present our research results of measured temperatures of inner conductor and surface and the compared results of those data with other cable company. We also show that our results agree with those made by other company.

Durability Evaluation and Defect Pattern Analysis in Railway Bridge Through Field Investigation (현장조사를 통한 철도 고가교 구조물의 내구성 평가 및 결함 패턴 분석)

  • Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Because of the defect in design, damage in using period, and deterioration in long term exposure to severe environmental condition, degradation of performance in RC (Reinforced Concrete) structures has occurred. This paper contains durability performance evaluation in railway bridges which covers eight districts through field investigation. For the target structures, durability performance is evaluated and the critical problems in use are derived. Additionally, service lifes for the deteriorated structures are evaluated through Durability-Environment index method based on the results from field investigation, and the results are compared with those from the condition assuming the structures without defect, damage, and deterioration. The target structures which consist of RC T girder, PSC girder, RC box, and Rahmen are investigated and the critical damage patterns are derived. They are evaluated to be cracks in PSC girder end, flexural cracks in PSC girder, crack around EPT anchor, and flexural cracks in RC T girder and RC box. The reasons for the critical patterns are also investigated. This study can be utilized for the repair planning considering the different district and the structure types.

The Degradation Analysis of Characteristic Parameters by NBTI stress in p-MOS Transistor for High Speed (고속용 p-MOS 트랜지스터에서 NBTI 스트레스에 의한 특성 인자의 열화 분석)

  • Lee, Yong-Jae;Lee, Jong-Hyung;Han, Dae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.80-86
    • /
    • 2010
  • This work has been measured and analyzed the device degradation of NBTI (Negative Bias Temperature Instability) stress induced the increase of gate-induced-drain-leakage(GIDL) current for p-MOS transistors of gate channel length 0.13 [${\mu}m$]. From the relation between the variation of threshold voltage and subthreshold slop by NBTI stress, it has been found that the dominant mechanism for device degradation is the interface state generation. From the GIDL measurement results, we confined that the EHP generation in interface state due to NBTI stress led to the increase of GIDL current. As a results, one should take care of the increased GIDL current after NBTI stress in the ultra-thin gate oxide device. Also, the simultaneous consideration of reliability characteristics and dc device performance is highly necessary in the stress parameters of nanoscale CMOS communication circuit design.

A Performance Improvement of NM-MMA Adaptive Equalization Algorithm using Adaptive Modulus (Adaptive Modulus를 이용한 NM-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.113-119
    • /
    • 2018
  • This paper relates the AM-NM-MMA algorithm which possible to adaptive equalization performance improvement using the adaptive modulus instead of fixed modulus in the NM-MMA algorithm. The NM-MMA emerged for the tradeoff the MMA and SE-MMA algorithm characteristics, the MMA provides the less residual values in the steady state and have a slow convergence rate, the SE-MMA provides the fast convergence rate and increae the risidual values in the steady state. But the fixed modulus can not give the zero residual values in the perfect equalization state and eqaulization performance were degrade, the adaptive modulus was applied in order to reducing the residual values, and its improved performance were confirmed by simulation. For this, the equalizer output constellation, residual isi, MD, MSE, SER were used for performance index. As a result of computer simulation, the AM-NM-MMA has more good performance in equalizer output signal constellation, residual isi, MD, MSE than the NM-MMA, but not in SER performance.

Diagnosis of Carburized Degradation in Cracking Tube by Ultrasonic Wave (초음파에 의한 열분해관의 침탄열화도 진단)

  • Kim, C.G.;Kim, S.T.;Cho, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.5
    • /
    • pp.381-388
    • /
    • 1998
  • The ultrasonic method, which is well known as non-destructive test method, is widely used to evaluate the material damage caused by degradation practically. However, this method is just used for measuring the crack size and the thickness loss of tube. The purpose of this study is to investigate the applicability of the ultrasonic technique for the evaluation of carburized material and to suggest the correlations between the ultrasonic characteristics and carburized degradation. The miniaturized specimens($40{\times}20{\times}6.3mm$) are adopted from the HK-40 (25Cr-20Ni-0.4C) centrifugal cast tube after carburization treatment. Carburization was carried at $1200^{\circ}C$ by the pack method. The results of ultrasonic test present that the longitudinal wave velocity increased with the increase of carburized depth. The correlation between the longitudinal wave velocity and carburization was changed with the density and Young's modulus. Therefore, the average velocity in the materials carburized for 336 hours and the unused one were 5,840 m/s and 5,755 m/s at 5 MHz, respectively. With the obtained results from this study, it can be recognized that the technique using the ultrasonic velocity property is very useful method to evaluate the degree of carburized material non-destructively.

  • PDF

Accelerated Degradation Test and Failure Analysis of Rapid Curing Epoxy Resin for Restoration of Cultural Heritage (문화재 복원용 속(速)경화형 Epoxy계 수지의 가속열화시험 및 고장분석 연구)

  • Nam, Byeong Jik;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.467-483
    • /
    • 2017
  • In this study, the degradation properties by temperature stress of $Araldite^{(R)}$ rapid-curing epoxy resin used for inorganic cultural heritages, was identified. The tensile and tensile shear strength of durability decreased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$. In terms of stability of external stress and temperature, the slow-curing epoxy was superior to the rapid-curing epoxy, and cultural heritage conservation plans should therefore consider the strength and stress properties of restoration materials. Color differences increased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$, and glossiness decreased. Both color and gloss stability were weak, which necessitates the improvement of optical properties. Thermal properties (weight loss, decomposition temperature, and glass transition temperature) of adhesives are linked to mechanical properties. Interfacial properties of the adherend and water vapor transmission rates of adhesives are linked to performance variation. For porous media (ceramics, brick, and stone), isothermal and isohumid environments are important. For outdoor artifacts on display in museums, changes in physical properties by exposure to varying environmental conditions need to be minimized. These results can be used as baseline data in the study of the degradation velocity and lifetime prediction of rapid-curing epoxy resin for the restoration of cultural heritages.

A Study on the Degradation Properties of DGEBA/TETA Epoxy System for Restoration of Ceramics by Temperature (도자기 복원용 DGEBA/TETA Epoxy계 수지의 온도에 의한 열화 특성 연구)

  • Nam, Byeong Jik;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.373-386
    • /
    • 2015
  • This study identified degradation properties by temperature stress with Araldite$^{(R)}$ AY103-1/HY956 used for ceramics. Tensile and compressive strength of durability increased for 6,480 hours at temperature of $34{\sim}45^{\circ}C$. In stability of external stress and temperature, compressive strength is superior to tensile strength, it requires conservation plans considering strength properties and stress of restoration materials. The tensile shear strength of adhesion properties decreased for 4,320 hours at temperature of $40{\sim}60^{\circ}C$. In ceramics with porosity, environments under isothermal-isohumidity are important because interfacial properties of adherend are concerned with performance variation. Glossiness decreased for 6,480 hours at temperature of $34{\sim}45^{\circ}C$ and color difference increased. Gloss stability was superior and color stability was weak, which requires improvement of optical properties. In artifacts on display in museums, there is concern about temperature rise on restoration materials by lighting therefore, it needs to minimize change in physical properties by exposure environments.