• Title/Summary/Keyword: 열팽창변형

Search Result 99, Processing Time 0.028 seconds

Properties of Thermal Expansion Strain of Light Weight Aggregate Concrete with Loading Conditions (하중조건에 따른 경량골재 콘크리트의 열팽창변형 특성)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Lee, Tae-Gyu;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.255-256
    • /
    • 2012
  • In this study, strain properties of high strength concrete using light weight aggregate which is widely used in recent years are evaluated. For these purpose, thermal strain, transient creep were measured in prestressed condition as 0, 20, 40% of specimen strength at target temperature with 60MPa specimens which was using normal and light weight aggregate. As a result, light weight aggregate is more advantageous for the control of strain than normal aggregate because of its low thermal expansion.

  • PDF

The effects of thermal expension properties of flexible metal substrates on the Si thin film (금속 연성기판재의 열팽창 특성이 Si 박막 층에 미치는 영향)

  • Lee, Min-Su;Yim, Tai-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.367-369
    • /
    • 2009
  • 플렉서블 태양전지용 연성기판재에는 플라스틱재와 금속재가 있다. 기존의 연성기판인 플라스틱의 경우 열과, 내구성, 화학약품에 약하다는 단점이 있으며, 금속기판은 높은 생산원가, 박판화의 어려움 등의 문제를 안고 있다. 일반적으로 기판재와 cell을 구성하는 반도체 층의 열팽창 거동 차이에 의한 열 변형이 태양전지의 공정안정성에 영향을 주는 것으로 알려져 있으며, cell을 구성하는 반도체 층과 열팽창 거동이 유사한 금속기판재의 적용이 필요하다. Si 박막 태양전지의 경우 Si 열팽창 거동과 비슷한 특성을 갖는 기판재의 개발이 필요하다. 전주법을 적용하여 조성이 다른 Ni계 합금의 열팽창 거동을 TMA 장비를 사용하여 측정하였다. 그리고 전산해석 Tool을 활용하여 가상의 Si 박막 태양전지 제조공정을 설정하고 고온 공정온도에서 상온으로 냉각시 발생되는 층간 열변형 연구를 수행하였고 열팽창 거동이 다른 합금 상에 Si층을 증착하여 열 충격에 의한 결함 발생여부를 관찰하였다.

  • PDF

Thermally-Expandable Molding Process for Thermoset Composite Materials (열팽창 치공구를 이용한 열경화성 복합재료의 성형연구)

  • 이준호;금성우;장원영;남재도
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.690-700
    • /
    • 2000
  • In this study, an elastomer-assistered compression molding process was investigated by experiments as well as modeling for the long-fiber reinforced thermoset composites. The consolidation pressure generated by fixed-volume and variable-volume conditions was thermodynamically derived for both elastomer and curing prepregs, and was compared with the pressure measured during curing of epoxy matrix. Exhibiting non-linear viscoelastic characteristics in the compressive stress-strain tests, the measured stress was well compared with a modifed KWW (Kohlrausch-Williame-Watts) equation, which is based on the Maxwell viscoelastic model. Using the developed model equations, the consolidation pressure generated by the elastomer was successfully predicted for the compression molding process of thermoset composite materials in tile closed mold system.

  • PDF

Measurement and Evaluation of Thermal Expansion Coefficient for Warpage Analysis of Package Substrate (패키지 기판의 Warpage 해석을 위한 열팽창계수의 측정 및 평가)

  • Yang, Hee Gul;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1049-1056
    • /
    • 2014
  • Microelectronics components contain various materials with different coefficients of thermal expansion (CTE). Although a large amount of published data on the CTE of standard materials is available, it occasionally becomes necessary to measure this property for a specific actual material over a particular temperature range. A change in the temperature of a material causes a corresponding change in the output of the strain gage installed on the specimen because of not only the mechanical load but also the temperature change. In this paper, a detailed technique for CTE measurement based on these thermal characteristics of strain gages is proposed and its reliability is evaluated. A steel specimen, aluminum specimen, and copper specimen, whose CTE values are well known, were used in this evaluation. The proposed technique was successfully applied to the measurement of the CTE of a coreless package substrate composing of electronics packages.

Strain Behavior of Ultra-high-strength Concrete under High Temperature and Loading (고온 및 재하에 따른 초고강도콘크리트의 변형거동)

  • Kim, Gyu-Yong;Nam, Jeong-Soo;Choe, Gyeong-Cheol;Yoon, Min-Ho;Hwang, Eui-Chul;Baek, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.86-87
    • /
    • 2017
  • The high-temperature creep of Ultra-High-Strength Concrete (UHSC) has been investigated in this study. The purpose of this study is to evaluated total strain and high-temperature creep at elevated temperatures under loading condition of UHSC. As results, Total strain of UHSC increased showing shrinkage with increasing compressive strength. The high-temperature creep of UHSC increased with the temperature and higher level of compressive strength showed bigger high-temperature creep.

  • PDF

Design of Flexure Mounts for Satellite Primary Mirrors (인공위성 주반사경의 플렉셔 마운트 설계)

  • 엄태경;박강수;조지현;이완술;이준호;윤성기;이응식;우선희;이승훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.138-139
    • /
    • 2003
  • 반사경을 지지하는 데에 있어서의 기계적, 열적 변형이 광학 부품에 미치는 영향을 최소화 하도록 광학 요소를 이러한 영향으로부터 차단하는 기계 장치를 플렉셔(flexure)라고 한다. 기계적 영향은 중력, 관성, 진동에 의한 하중 및 조립 시의 오차에 의한 응력 등에 의해 발생하는 변형을 말한다. 또한 열적 영향은 열적 평형 상태와 과도 상태 하에서 주위 환경의 온도변화에 의한 변형을 말한다. 예를 들어 작은 열팽창 계수를 가진 반사경 또는 렌즈와 큰 열팽창 계수를 갖는 지지구조가 어떤 온도 하에서 조립된 후 처음 온도와 다른 온도에 놓이는 경우를 생각해 보자. (중략)

  • PDF

Setting Shrinkage, Coefficient of Thermal Expansion, and Elastic Modulus of UP-MMA Based Polymer Concrete (UP-MMA 폴리머 콘크리트의 경화수축, 열팽창계수 및 탄성계수)

  • Yeon, Kyu-Seok;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • This study examines setting shrinkage, coefficient of thermal expansion, and elastic modulus of unsaturated polyester( UP)-methyl methacrylate(MMA) polymer concrete, which is generally used for repair of portland cement concrete pavement and manufacturing of precast products. In this study, a series of laboratory test were conducted with variables such as UP-MMA ratio, shrinkage reducing agent (SRA) content, and test temperature. The results showed that the setting shrinkage ranged from 29.2 to $82.6{\times}10^{-4}$, which was significantly affected by test temperature. Moreover, the findings revealed that the coefficient of thermal expansion, elastic modulus and ultimate strain of UP-MMA based polymer concrete ranged from 21.6 to $31.2{\times}10^{-6}/^{\circ}C$, 2.8 to $3.3{\times}10^4$ MPa, and 0.00381 to 0.00418, respectively. The results of this study will be used as important data for design and application of UP-MMA based polymer concrete.

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition (60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가)

  • Yoon, Min-Ho;Choe, Gyeong-Cheol;Lee, Tae-Gyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.

Design of High-precision CTE measurement System for the Structural Materials in Space Applications (우주용 구조 재료의 초정밀 열팽창계수 측정시스템 설계)

  • Kim, Hong-Il;Han, Jae-Hung;Yang, Ho-Soon;Cho, Chang-Rae;Cho, Hyok-Jin;Kim, Hong-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.916-922
    • /
    • 2008
  • Structures being used in space environment, should be designed to have minimum CTE(coefficient of thermal expansion) for the dimensional stability. Accurate CTE data of the materials are required to design the space structures consisting of various materials. There are uncertainties in the characteristics of materials even though the same manufacturing processes are applied. Therefore, it is needed to measure the thermal deformation of not only the material specimen but also substructures in simulated space environment, such as high vacuum condition. In this research, therefore, precise CTE measurement system using displacement measuring interferometer and vacuum chamber has been designed with uncertainty analysis of the measurements. This system can be used to measure the CTE of the specimen or thermal expansion of the substructure with varying size up to 50cm in length. To measure the low CTE material, overall uncertainty of this system is expected under 0.01ppm/K.

Micromechanical Properties in Elastically Inhomogeneous Materials (Part I : Theoretical Basis) (탄성 불균질 재료의 미시역학거동 (Part I :이론적 기초))

  • Gang, Chang-Seok;Hong, Seong-Gil;Wakashima, Kenji
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.354-360
    • /
    • 2001
  • By applying Eshelby's theory on the'transformation' and' inhomogeneity'problems of an ellipsoidal inclusion, a microscopic stress-strain is formulated for a composite material consisting of a matrix and a large number of aligned ellipsoidal inclusions. Some of the composites of practical interest, such as unidirectionally fiber- reinforced, Particle dispersion strengthened and layered composites can be treated by changing the axial ratios of the ellipsoidal inclusion. The macroscopic stress-strain relation obtained is applicable to elastic and elasto-plastic deformation of the composite in uniform loading.

  • PDF