Thermally-Expandable Molding Process for Thermoset Composite Materials

열팽창 치공구를 이용한 열경화성 복합재료의 성형연구

  • 이준호 (성균관대학교 고분자공학과) ;
  • 금성우 (성균관대학교 고분자공학과) ;
  • 장원영 (성균관대학교 고분자공학과) ;
  • 남재도 (성균관대학교 고분자공학과)
  • Published : 2000.09.01

Abstract

In this study, an elastomer-assistered compression molding process was investigated by experiments as well as modeling for the long-fiber reinforced thermoset composites. The consolidation pressure generated by fixed-volume and variable-volume conditions was thermodynamically derived for both elastomer and curing prepregs, and was compared with the pressure measured during curing of epoxy matrix. Exhibiting non-linear viscoelastic characteristics in the compressive stress-strain tests, the measured stress was well compared with a modifed KWW (Kohlrausch-Williame-Watts) equation, which is based on the Maxwell viscoelastic model. Using the developed model equations, the consolidation pressure generated by the elastomer was successfully predicted for the compression molding process of thermoset composite materials in tile closed mold system.

본 연구에서는 온도의 상승에 의하여 부피가 팽창하는 열팽창 고무 치공구의 팽창 특성을 이용하여 열경화성 복합재료를 경화하고 압축하는 과정을 실험과 모델링을 통하여 해석하였다. 열팽창 고무치공구가 사용되는 닫힌계 (fixed-volume process)와 열린계 (variable-volume process)에서 예상되는 압력을 이론적으로 유도하였고, 경화가 수반되는 과정에 있어서는 실험을 통하여 열팽창 치공구와 프리프레그가 나타내는 압력을 측정하였다. 온도가 상승하고 경화가 수반되는 경우에 등속도 압축실험에 의하여 얻어진 응력-변형율 곡선은 비선형 점탄성 특성을 보여주었는데, 본 연구에서는 Maxwell모델을 KWW (Kohlrausch-Williame-Watts)식으로 변형시킨 모델식을 이용하여 이를 매우 정확하게 표현할 수 있었다. 이 모델을 이용하여 몰드의 부피를 고정시킨 상태에서 경화시키는 닫힌계 공정에서 예상되는 압력을 예측하였으며 따라서 열팽창 치공구를 열경화성 복합재료의 경화압축 공정에 성공적으로 적용하였고 이를 해석하였다.

Keywords

References

  1. Trans. Faraday Soc. v.66 G. Willams;D. C. Watts
  2. Handbook of Composites Y. M. Tarmopolskii;S. T. Peters;A. I. Beil;S. T. Peters(ed.)
  3. Handbook of Composites D. R. Sidwell;S. T. Peters
  4. Handbook of Composite L. Fong;S. G. Advani;S. T. Peters(ed.)
  5. Advanced Composite Manutacturing T. G. Gutowski;T. G. Gutowski(ed.)
  6. Advances in Polymer Technology v.16 no.3 S.-W. Kim;K.-J. Lee;J. C. Seferis;J.-D. Nam
  7. 5th Pacific Polymer Conference M.-K. Ku;K.-S. Oh;D.-W. Kim;J.-D. Nam;M. H. Suh;S. H. Lee
  8. J. Adv. Mat. v.26 S. Erik;M. Robert
  9. 36th Int'l. SAMPE Symp. R. A. Cull;L. Jacobson;D. F. McMahon
  10. 36th Int'l. SAMPE Symp. A. L. Peterson;R. A. Cull;D. F. McMahon
  11. Properties of Polymers D. W. Van Krevelen
  12. Engineering with Rubber A. N. Gent;K. W. Scott
  13. Principles of Polymer Engineering N. G. Mcrum;C. P. Buckley;C. B. Bucknall
  14. Relaxation Phenomena in Polymers S. Matsuoka
  15. Mechanical Properties of Solid Poymers I. M. Ward
  16. J. Chem. Phys. v.77 no.12 S. Mashimo;R. Nozaki;S. Yagihara;S. Takeishi
  17. Scaling Concepts in Polymer Physics P.-G. deGennes
  18. J. Chem. Soc., Faraday Trans. l. v.85 no.5 K. Adachi;Y. Imanishi;T. Kotaka
  19. Macromolecules v.23 D. Boese;F. Kremer
  20. Internal Stress-Dimensional Instabilities and Milecular Orientations in Plastics L. C. E. Struik
  21. Polym. Eng. & Sci. v.21 no.14 H. E. Bair;G. E. Johnson;E. W. Anderson;S. Matsuoka
  22. Masters Thesis, Sung Kyun Kwan Univ. Consolidation Pressure Control in Thermally Expandable Rubber Tool Process for Epoxy/Carbon Fiber Composite M.-K. Ku