• Title/Summary/Keyword: 열처리 시간

Search Result 1,525, Processing Time 0.038 seconds

Mineralogical Changes of Oyster Shells by Calcination: A Comparative Study with Limestone (소성에 따른 굴패각의 광물학적 특성변화: 석회석과의 비교 연구)

  • Lee, Jin Won;Choi, Seung-Hyun;Kim, Seok-Hwi;Cha, Wang Seog;Kim, Kangjoo;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.485-492
    • /
    • 2018
  • About 300 thousand tones of oyster shells are produced annually and, thus, their massive recycling methods are required. Recently, a method, utilizing them as wet desulfurization materials after removal of organic matters and changing $CaCO_3$ phase into CaO through calcination, is under consideration. This study investigates the mineralogical changes (specific surface area, phase changes, surface state, etc.) of oyster shells by calcination and their characteristics were compared with those of limestone. Uncalcined oyster shells showed the higher specific surface area than limestone because the former are composed of platy and columnar structures. In contrast, investigated limestone showed a dense structure. The phase change of oyster shells occurred at lower temperature than that of limestone. The specific surface area of oyster shell decreased significantly after calcination while limestone depicted a drastic increase. Small amount of Na contained in oyster shell was suggested as the cause of this phenomenon; in that, it acted as a flux causing melting and sintering of oyster materials at lower temperature. Because of this, an additional phenomenon was observed that a part of shell materials remained untransformed even at higher calcination temperature and after longer treatment period due to the sintered surface, which covers the rest parts. Further studies investigating the effect of this phenomena from the perspective of desulfurization is required.

Evaluation of nitrogen oxide removal characteristics using TiO2 (TiO2를 이용한 질소산화물 제거 특성 평가)

  • Park, Jun-Gu;Lim, Hee-Ah;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.668-675
    • /
    • 2019
  • Fine dust in air pollutants is recognized as one of the most serious social environmental problems. Most of the NOx is generated in a combustion process such as that of a coal-fired power plant, and therefore efficient elimination of the NOx from the coal-fired power plants is needed. This study investigates the removal efficiency of using $TiO_2$, a photocatalyst, to remove NOx by Selective Catalytic Reduction (SCR). To evaluate the NOx removal efficiency, $TiO_2$ catalyst and phosphate binder were mixed on the surface of the $Al_2O_3$ substrate with the exothermic agent, and the substrate was heat-treated. The NOx removal efficiency of the catalysts was evaluated according to the temperature, and XRD, SEM, TG-DTA and BET analyzes were performed to investigate the physicochemical properties of the catalysts. NOx removal efficiency was 58.7%~65.9% at 20min, 63.7~66.0% at 30min with temperature change according to time($250^{\circ}C{\sim}500^{\circ}C$). The $TiO_2$ used in the SCR for NOx removal is judged to have the most efficient removal efficiency at $300^{\circ}C$.

Isolation of an Agarase-producing Persicobacter sp. DH-3 and Characterization of its β-agarase (Agarase를 생산하는 Persicobacter sp. DH-3의 분리 및 β-agarase의 특성)

  • Heo, Da-Hye;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.158-163
    • /
    • 2019
  • The purpose of this study was to isolate a new marine agarase-producing bacterium. Agarase can hydrolyze agar and agarose to produce agarooligosaccharides or neoagarooligosaccharides, which possess many physiological functions. Strain DH-3 was isolated from seawater collected from the coast of Yeosu at Jeollanam province, Korea. A 16S rDNA sequence analysis showed this strain to be Persicobacter sp. DH-3. Extracellular agarase was prepared from culture media of Persicobacter sp. DH-3 and used for characterization. Relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 50, 55, 70, 100, 90, and 50%, respectively. Relative activities at pH 5, 6, 7, and 8 were 75, 100, 90, and 75%, respectively. The enzyme showed maximum activity at $50^{\circ}C$ in a 20 mM Tris-HCl buffer at pH 6. This enzyme could be useful, as agar is in liquid state at $50^{\circ}C$. Agarase activities were maintained at 80% or more for 2 hr at 20, 30, and $40^{\circ}C$. Thin layer chromatography analysis suggested that Persicobacter sp. DH-3 produced extracellular ${\beta}$-agarases as it hydrolyzed agarose to produce neoagarohexaose and neoagarotetraose. In addition, zymogram analysis confirmed that Persicobacter sp. DH-3 produces at least three agar-degrading enzymes with molecular weights of 45, 70, and 140 kDa. Therefore, it is expected that agarases from Persicobacter sp. DH-3 could be used to produce functional neoagarooligosaccharides.

Electrical and Magnetic Properties of Magnetite Powder during a Verwey Transition (Verwey 전이와 마그네타이트의 전기적 및 자기적 특성)

  • Yoon, Sunghyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1302-1307
    • /
    • 2018
  • The crystallographic, electrical and magnetic behaviors of magnetite powder in the vicinity of its Verwey transition were investigated in this study. Magnetite was prepared by synthesizing a nanoparticle precursor and then annealing it at $800^{\circ}C$ for 1 h under a dynamic vacuum. Crystallographic and morphology analyses were done by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The electrical and the magnetic properties were examined by using $M{\ddot{o}}ssbauer$ spectroscopy, vibrating sample magnetometer (VSM) and resistivity measurement. Both the magnetic moment and the resistivity showed discontinuous changes at the Verwey transition temperature ($T_V$). The temperature dependence of magnetic anisotropy constant showed a monotonic decrease with increasing temperature, with slight dip near $T_V$. $M{\ddot{o}}ssbauer$ spectra showed the superposition of two sextets, one from the tetrahedral (A) and the other from the octahedral (B) sites. The results revealed that identical charge states existed in the B site at temperatures both above and below $T_V$. A coordination crossover resulted in a transition from an inverse to a normal spinel at or close to $T_V$.

Investigation on the Preparation Method of TiO2-mayenite for NOx Removal (질소산화물 제거를 위한 TiO2-mayenite 제조 방법에 관한 연구)

  • Park, Ji Hye;Park, Jung Jun;Park, Hee Ju;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.304-310
    • /
    • 2020
  • In order to apply a photocatalyst (TiO2) to various building materials, TiO2-mayenite was prepared in this study. The TiO2 was synthesized using the sol-gel method by fixing titanium isopropoxide (TTIP) and urea at a ratio of 1 : 1. Later, they were calcined in a temperature range of 400-700 ℃ to analyze the properties according to temperature. BET, TGA, and XRD were used to analyze the physical and chemical properties of TiO2. The nitrogen oxide removal test was confirmed by measuring the change in the concentration of NO for 1 h according to KS L ISO 22197-1. The prepared TiO2 samples exhibited an anatase crystal structure below 600 ℃, and TiO2 (urea)-400 showed the highest nitrogen oxide removal rate at 2.35 µmol h-1. TiO2-mayenite was prepared using two methods: spraying TiO2 dispersion solution (s/s) and sol-gel solution (g/s). Through BET and XRD analysis, it was found that 5-TiO2 (g/s) prepared by spraying a sol-gel solution has maintained its crystallinity even after heat treatment. Also, 5-TiO2 (g/s)-500 showed the highest removal rate of 0.55 µmol h-1 in the nitrogen oxide removal test. To prepare TiO2-mayenite, it was confirmed that mayenite should be blended with TiO2 in a sol-gel state to maintain the crystal structure and exhibit a high nitrogen oxide removal rate.

Effects of Hair Dyeing and Change of Hair Texture by Indigo Dye (인디고 염료에 의한 모발 염색효과와 모질의 변화)

  • Kim, Ju-Sub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.9-18
    • /
    • 2021
  • This study was aimed to investigate the effects of hair dyeing and changes of hair quality by the application of indigo dye. Methods: Indigo dye was used after water bath. After application of the dye to healthy and bleached hair samples, they were treated with heat and remained naturally by different times. Each sample was measured before and after the application and compared for the analysis. To investigate the effects of dyeing, L⁎, a⁎, and b⁎ values and bleaching degree were measured using by color-difference meter. To understand the changes of hair quality, absorbance and gloss were measured using by tensile strength and methylene blue. Results: Upon the results of dyeing, all the samples showed the significant dyeing effects before and after the application in terms of L⁎, a⁎, and b⁎ values. With respect to the bleaching effects, it showed the greatest change on Day 1 and did not show any changes from Day 3. For the measurement of tensile strength, mean values of all the samples were increased. However, the results were not significant, statistically, demonstrating no change of hair quality. No statistically significant results were found in the samples except healthy 7L(3) sample upon the absorbance results using methylene blue. Gloss of samples was changed upon the statistical analysis results. Conclusion: Indigo dye showed the hair dyeing effects, significantly, while gloss was changed and tensile strength and absorbance were not changed in terms of hair quality. Further studies are required on the processing with a variety of dyes and on the measurements for reliability and objectivity.

Fabrication of Copper(II) Oxide Plated Carbon Sponge for Free-standing Resistive Type Gas Sensor and Its Application to Nitric Oxide Detection (프리스탠딩 저항형 가스 센서용 산화구리 무전해 도금 탄소스펀지 제조 및 일산화질소 감지)

  • Kim, Seokjin;Ha, Seongmin;Myeong, Seongjae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.630-635
    • /
    • 2022
  • Copper(II) oxide (CuO), electroless plated on a nitrogen-containing carbon sponge prepared by a melamine sponge thermal treatment, was developed as a nitric oxide (NO) gas sensor that operates without a wafer. The CuO content on the surface of the carbon sponge increased as the plating time increased, but the content of nitrogen known to induce NO gas adsorption decreased. The untreated carbon sponge showed a maximum resistance change (5.0%) at 18 min. On the other hand, the CuO plated sample (CuO30s-CS) showed a maximum resistance change of 18.3% in 8 min. It is considered that the improvement of the NO gas sensing capability was caused by the increase in hole carriers of the carbon sponge and improved movement of electrons due to CuO. However, the NO gas detection resistance of the CuO electroless plated carbon sponge for 60 s decreased to 1.9%. It is considered that the surface of the carbon sponge was completely plated with CuO, resulting in a decrease in the NO gas adsorption capacity and resistance change. Thus, CuO-plated carbon sponge can be used as an effective NO gas sensor because it has fast and excellent resistance change properties, but CuO should not be completely plated on the surface of the carbon sponge.

Recovery Process of Vanadium from the Leaching Solution of Salt-Roasted Vanadate Ore (바나듐광 염배소물 수침출 용액으로부터 바나듐 회수공정 고찰)

  • Yoon, Ho-Sung;Heo, Seo-Jin;Park, Yu-Jin;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Rina;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.40-48
    • /
    • 2022
  • In this study, the effects of solution components were investigated in the recovery of vanadium as ammonium metavanadate from vanadium-ore-salt roasting-water leaching solution. The vanadium-containing solution is strongly alkaline (pH 13), so the pH must be lowered to 9 or less to increase the ammonium metavanadate precipitation efficiency. However, in the process of adjusting the solution pH using sulfuric acid, aluminum ions are co-precipitated, which must be removed first. In this study, aluminum was precipitated in the form of an aluminum-silicate compound using sodium silicate, and the conditions for minimizing vanadium loss in this process were investigated. After aluminum removal, the silicate was precipitated and removed by adjusting the solution pH to 9 or less using sulfuric acid. In this process, the concentration and addition rate of sulfuric acid have a significant influence on the loss of vanadium, and vanadium loss was minimized as much as possible by slowly adding dilute sulfuric acid. Ammonium metavanadate was precipitated using three equivalents of ammonium chloride at room temperature from the aluminum-free, aqueous solution of vanadium following the pH adjustment process. The recovery yield of vanadium in the form of ammonium metavanadate exceeded 81%. After washing the product, vanadium pentoxide with 98.6% purity was obtained following heat treatment at 550 ℃ for 2 hours.

Enhancing Electrical Properties of Sol-Gel Processed IGZO Thin-Film Transistors through Nitrogen Atmosphere Electron Beam Irradiation (질소분위기 전자빔 조사에 의한 졸-겔 IGZO 박막 트랜지스터의 전기적 특성 향상)

  • Jeeho Park;Young-Seok Song;Sukang Bae;Tae-Wook Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.56-63
    • /
    • 2023
  • In this paper, we studied the effect of electron beam irradiation on sol-gel indium-gallium-zinc oxide (IGZO) thin films under air and nitrogen atmosphere and carried out the electrical characterization of the s ol-gel IGZO thin film transistors (TFTs). To investigate the optical properties, crystalline structure and chemical state of the sol-gel IGZO thin films after electron beam irradiation, UV-Visible spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were carried out. The sol-gel IGZO thin films exhibited over 80% transmittance in the visible range. The XRD analysis confirmed the amorphous nature of the sol-gel IGZO films regardless of electron beam irradiation. When electron beam irradiation was conducted in a nitrogen (N2) atmosphere, we observed an increased proportion of peaks related to M-O bonding contributed to the improved quality of the thin films. Sol-gel IGZO TFTs subjected to electron beam exposure in a nitrogen atmosphere exhibited enhanced electrical characteristics in terms of on/off ratio and electron mobility. In addition, the electrical parameters of the transistor (on/off ratio, threshold voltage, electron mobility, subthreshold swing) remained relatively stable over time, indicating that the electron beam exposure process in a nitrogen atmosphere could enhance the reliability of IGZO-based thin-film transistors in the fabrication of sol-gel processed TFTs.

Electrochemical Properties of PAN-based Carbon Fibers Tow Electrode Using Organic/inorganic Nanocomposite and Its Application of Non-enzymatic Sensor (유/무기 나노 복합체를 이용한 PAN계 탄소섬유 토우 유연 전극의 전기화학적 특성 평가 및 비효소 전기화학 센서의 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.233-237
    • /
    • 2024
  • This study is about the fabrication of a flexible electrode based on PAN-based carbon fibers tow using organic/inorganic nanocomposite and its application of non-enzymatic sensor. The organic/inorganic nanocomposite was composed of the conductive polymer polyaniline (PANI) and the metal oxide CuO. And glucose was used as the target of the electrochemical sensor. Commercialized CFTs were pretreated through heat treatment for desizing and electrochemical oxidation for activation. This nanocomposite was sequentially synthesized on the pretreated CFT surface using electrochemical polymerization and electrochemical deposition. Finally, the CFT/PANI/CuO NPs electrode was obtained. The electrochemical properties and sensing performance of the CFT/PANI/CuO NPs electrode were analyzed using chronoamperometry (CA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The sensitivity of the CFT/PANI/CuO NPs electrode was about 8.352 mA/mM (in a linear range of 0.445~6.674 mM) and 3.369 mA/mM (in a linear range of 6.674~50 mM), respectively. So, the CFT/PANI/CuO NPs electrode exhibited the enhanced sensing performances due to unique properties such as small peak potential separation, low electron transfer resistance, and large specific surface area.