• Title/Summary/Keyword: 열차운영효율

Search Result 80, Processing Time 0.021 seconds

On Ensuring the Safety Integrity of the BCT System through Linkage Safety Analysis Techniques and SysML-based Architecture Artifact (안전분석 기법과 SysML 기반의 아키텍처 산출물의 연계성 확보를 통한 BCT 시스템의 안전 무결성 확보에 관한 연구)

  • Kim, Joo-Uk;Oh, Se-Chan;Sim, Sang-Hyun;Kim, Young-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.352-362
    • /
    • 2016
  • Today, it appears that the rapid advances in technology have allowed broadening both the system technology and the business opportunities in the rail industry. Owing to the developments in technology and the industry, and also due to the hearth, the latest high-speed trains and a variety of unattended operations in rail systems are being developed and are operational. In particular, this study covers the existing railway rolling stock and signaling systems that operate in an environment more complex than the concept of localized management, so the introduction of a new signaling system is needed. In addition, developments based on the existing signal system concepts for passenger railways need to minimize human injury. In this study, to participate in the development of new systems in a variety of domains and to provide an integrated common vision methodology as an engineer on the basis of efficient signal system design and safety would like to present the methodology for action. Therefore, each different linkage through the next new domain zone system design: design through to secure the integrity of safety than can secure methodology.

KTX Impact on the Inter-Regional Transportation System (고속철도 개통후 지역간 교통체계의 변화)

  • Lee, Jin-Seon;Kim, Gyeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.75-82
    • /
    • 2005
  • To relieve congestion in the current system of intercity transportation, the Korea decided in 1990 to construct a high-speed railroad between Seoul and Busan and it is now in operation. This new mode of transportation significantly cut travel time between major cities and a trip from Seoul to the southeastern port of Busan. Since the KTX opening, average daily passenger numbers on both the Gyeongbu and Honam lines have increased about 1.3 fold over 2003 levels. As of December 2004, the KTX trains are carrying about 81,000 people a day. On KTX routes, the daily number of airline passengers dropped. Express long-distance bus traffic also dropped by 20% to 30%, while that on short-distance routes (100km or less) increased by about 20%. These figures clearly indicate that the Korean transportation network is becoming railroad-centric. However, the number of KTX passengers is fewer than anticipated possibly due to the Korean economic downturn and the operation of the KTX will leave many existing Saemaul and Mugunghwa train sets idle, which will be put into operation for areas, not covered by the KTX. When all the existing major lines have been electrified, more high-speed rail services will be phased in using direct connections to maximize operational efficiency. And also, the dual management by KTX and conventional rail will be regarded as the promotion of the benefit of the public.

Study of the Metropolitan Rapid Transport System to Minimize Sidetrack Construction (대피선 최소화를 고려한 광역철도 급행화 방안 연구)

  • Kim, Moo Sun;Kim, Jungtai;Kim, Taesik;Park, Sung Soo;Hong, Jae Sung;Cho, Yong Hyeon;Min, Jai Hong
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.402-409
    • /
    • 2013
  • In metropolitan railway systems, the average commuting time keeps increasing as the scheduled speed increases, and this leads to a decline of rail service usage and competitiveness. Therefore, effective express operation for urban trains is required to improve the scheduled speed. In this study, based on the obtainable time shortening efficiency and economic viability, several express operations are suggested for urban railways and these suggestions are compared by considering high performance trains with acceleration/deceleration and maximum speed improvement. As a result, the optimum express system, which can minimize the cost for sidetrack construction, is suggested.

Technologies and Standards of Future Railway Mobile Telecommunication (차세대 철도 통합무선망 기술 및 표준화 동향)

  • Yoon, Byungsik;Kim, Junsik;Lee, Sukjin;Kim, Kyung-Hee;Kim, Yong-Kyu;Park, Duk-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.519-527
    • /
    • 2013
  • Mobile radio technologies have evolved in the railway industry offering seamless connectivity and various functionalities to improve railway service. Recently, advanced mobile communication technologies have enabled a new level of railway customer services with more efficient railway operation. Since the LTE mobile communication technology offers many benefits and better performance for new railway services, it is considered to be a strong candidate for the future railway mobile telecommunication. However, communication networks in the railway sector are critical for secure operation and have stringent requirements for reliability and safety. In this paper, we explain the requirements for the future railway mobile telecommunication. The LTE, which would be the future railway mobile technology, is analyzed against these requirements. We also introduce the current state of standardization for the future railway mobile telecommunication and its implementation plan.

Formulation and Evaluation of Railway Optimal Alignment Design Model (철도 최적 노선설계 모형의 해석과 적용)

  • Kim, Jeong Hyun;Shin, Youngho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1845-1850
    • /
    • 2014
  • Railway operators have given a lot of efforts to determine the railway route of the minimum cost. In order to determine the optimal alignment, the alignment should be allocated satisfying the design criteria on various geographical condition with the minimum earth works. The determination of the optimal railway alignment is a kind of combination optimization because that must consider various design elements. This study developed a numerical model to determine the optimal railway alignment with the minimum construction cost. The problem was analyzed by the genetic algorithm, and the concept of the optimal alignment was established with the results from the analyses. The methodology was applied to a fictitious rail construction section and the result was evaluated. This methodology is meaningful considering the fact that the cost for energy is greater than that of the construction.

A Study on the Development of a Route Capacity Calculation Model for Improving Railway Operation Efficiency (철도 운행효율성 향상을 위한 노선용량 산정모형 개발에 관한 연구)

  • Kim, Bong-Jun;Kim, Si-gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.75-83
    • /
    • 2021
  • Over-urbanization has contributed to the increase in traffic problems. This makes the need for effective road planning and design more important than ever. I have been able to learn how to build a new road, and how to use it. However, in spite of the importance of good road planning, there are no systematic standards or methods for calculating traffic volume on railroad routes. Therefore, in this study, to strengthen the competitiveness of railroads, the concept of line capacity is introduced to railroads, and a clear standard and method for calculating railroad line capacity are presented. Based on the results, the line capacity of main railway lines for domestic railways was calculated. By applying the method of calculating the line capacity presented in this study, the capacity of existing railway lines and newly expanded routes can be calculated. It is expected that our findings will be able to provide systematic standards that can be applied to yield a more effective investment and design planning stage; the findings will also help improve the efficiency of railroad operation.

Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration (미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용)

  • Kim, Youngkwang;Kim, Bokju;Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.329-352
    • /
    • 2022
  • It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.

The review about ultra long subsea tunnel design under high water pressure (고수압 초장대 해저터널에 관한 연구)

  • Jun, Duk-Chan;Kim, Ki-Lim;Hong, Eui-Joon;Kim, Chan-Dong;Lee, Young-Joon;Hong, Cheor-Hwa
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.829-843
    • /
    • 2017
  • Subsea tunnel needs to be built over 50 km long to connect between nations and continents. However there are only 19 tunnels longer than 5 km until recently. And there is no history of constructing and operating tunnel longer than 50 km. In Korea, subsea tunnels with a length of more than 50 km are being planned, such as Korea~Japan, Korea~China, Honam~Jeju subsea tunnels. Because of the geographical conditions of Korea, most of these tunnels are inter-contry tunnels. So technology preemption for the subsea tunnel construction is getting more and more important. Most of these subsea tunnels are ultra-long tunnels under high water pressure conditions. So new technologies are required such as ventilation and disaster prevention of high-speed tunnels, securing of structural stability under high pressure conditions, and pressure reduction in high-speed conditions. These technologies are different from those of ground tunnels. Therefore, this paper describes the ultra-long subsea tunnel design under high water pressure of maximum 16 bars through the Honam (land) - Jeju (island) virtual subsea project. We proposed a reasonable solution to various problems such as securing structural stability in high pressure condition and ventilation disaster prevention system of ultra long-tunnel.

Study on Methodology for Effect Evaluation of Information Offering to Rail passengers - Focusing on the Gate Metering Case Study considering congested conditions at a platform - (철도 이용객 정보제공 효과평가 방법론 연구 - 승강장의 혼잡상황을 고려한 Gate Metering 사례 연구 중심으로 -)

  • Lee, Seon-Ha;Cheon, Choon-Keun;Jung, Byung-Doo;Yu, Byung-Young;Kim, Eun-Ji
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.50-62
    • /
    • 2015
  • Recently, Subway Line No. 9, described as a 'hell-like' subway for its recorded load factor of max. 240% due to the opening of the 2nd phase extension section, has been causing problems of recurrent congestion in a subway station building. A recurrent congestion in the station building becomes a factor to offend rail users and to reduce the efficiency of railway management. This study aims to establish the methodology for effect evaluation of information provided to rail users, and conducts a gate metering case study considering the congested conditions at a platform among the methodologies for effect evaluation. The metering effect evaluation by load factor was conducted through selecting the micro simulation and pedestrian simulation tool grafting a gate metering. As a result, it was confirmed that, if gate metering is performed, the service level and pedestrian density of a platform by load factor would improve. In other words, if metering is conducted at a platform, it is possible to control the load factor in the waiting space of a platform. Therefore, it was judged through this study that it is possible to set up the index for effect evaluation of information provided to manage congestion of rail users, and establish the methodology for effect evaluation of information provided to rail users through a program.

A Dynamic Behavior Evaluation of the Curved Rail according to Lateral Spring Stiffness of Track System (궤도시스템의 횡탄성에 따른 곡선부 레일의 동적거동평가)

  • Kim, Bag-Jin;Choi, Jung-Youl;Chun, Dae-Sung;Eom, Mac;Kang, Yun-Suk;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.517-528
    • /
    • 2007
  • Domestic or international existing researches regarding rail damage factors are focused on laying, vehicle conditions, driving speed and driving habits and overlook characteristics of track structure (elasticity, maintenance etc). Also in ballast track, as there is no special lateral spring stiffness of track also called as ballast lateral resistance in concrete track, generally, existing study shows concrete track has 2 time shorter life cycle for rail replacement than ballast track due to abrasion. As a result of domestic concrete track design and operation performance review, concrete track elasticity is lower than track elasticity of ballast track resulting higher damage on rail and tracks. Generally, concrete track has advantage in track elasticity adjustment than ballast track and in case of Europe, in concrete track design, it is recommended to have same or higher performance range of vertical elastic stiffness of ballast track but domestically or internationally review on lateral spring stiffness of track is very minimal. Therefore, through analysis of service line track on site measurement and analysis on performance of maintenance, in this research, dynamic characteristic behaviors of commonly used ballast and concrete track are studied to infer elasticity of service line track and experimentally prove effects of track lateral spring stiffness that influence curved rail damage as well as correlation between track elasticity by track system and rail damage to propose importance of appropriate elastic stiffness level for concrete and ballast track.

  • PDF