• Title/Summary/Keyword: 열전재료

Search Result 817, Processing Time 0.025 seconds

Study of Thermal Conductivity and Mechanical Property of Elastic Epoxy (탄성형 에폭시의 열전도율 및 기계적 특성에 대한 연구)

  • Lee, Kwan-Woo;Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Bok-Ki;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.319-322
    • /
    • 2004
  • In this paper, we studied on the thermal conductivity and a mechanical property of the elastic epoxy. According to industrial development, insulation materials have various properties. They are solid, liquid, gas state, there are various type. Epoxy, a kind of insulation material, demand of not only high hardness but also elastic property. When the electric current flows into the conductor and the place where the heat occurs, this heat becomes the cause which shortens the life of the electrical appliance. Therefore, for the heat occurred transmit quickly, thermal conductivity of the insulation material is highly demanded. We studied on the thermal conductivity of elastic epoxy on the high voltage. In this result, thermal conductivity confirmed that it followed thermal property of mixed epoxy and addictives. Hardness is decreased when addictives increased.

  • PDF

Thermoelectric Properties of Mn-doped FeSi2 (Mn 첨가 FeSi2의 열전변환특성)

  • Pai, Chul-Hoon;Park, Hyoung-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.315-320
    • /
    • 2008
  • The effect of Mn additive on the thermoelectric properties of Fe-Si alloys prepared by a RF inductive furnace was investigated. The electrical conductivity and Seebeck coefficient were measured as a function of temperature under Ar atmosphere to evaluate their applicability to thermoelectric energy conversion. The electrical conductivity of the specimens increased with increasing temperatures showing typical semiconducting behavior. The electrical conductivity of Mn-doped specimens are higher than that of undoped specimens and increased slightly with increasing the amount of Mn additive. This must be due to the difference in carrier concentration and the amount of residual metallic phase ${\varepsilon}$-FeSi(The ${\varepsilon}$-FeSi was detected in spite of 100 h annealing treatment at $830^{\circ}C$). And metallic conduction increased slightly with increasing the amount of Mn additive. On the other hand, Mn-doped specimens showed the lower Seebeck coefficient due to metallic phase. The power factor of Mn-doped specimens are higher than that of undoped specimens and would be affected by the electrical conductivity more than Seebeck coefficient.

Thermoelectric Properties of AlN-doped SiC Ceramics (AlN 첨가 SiC 세라믹스의 열전변환특성)

  • Pai, Chul-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.839-845
    • /
    • 2012
  • The effect of an AlN additive on the thermoelectric properties of SiC ceramics was studied. Porous SiC ceramics with 48-54% relative density were fabricated by sintering the pressed ${\alpha}-SiC$ powder compacts with AlN at $2100-2200^{\circ}C$ for 3 h in an Ar atmosphere. In the undoped specimens, the Seebeck coefficients were positive (p-type semiconducting) possibly due to a dominant effect of the acceptor impurities (Al, Fe) contained in the starting powder. With AlN addition, the reverse phase transformation of 6H-SiC to 4H-SiC was observed during the sintering process. The electrical conductivity of the AlN doped specimen was larger than that of the undoped specimen under the same conditions, which might be due to a reverse phase trans-formation. The Seebeck coefficient of the AlN doped specimen was also larger than that of the undoped specimen. The density of specimen and the amount of addition had significant effects on the thermoelectric properties.

Thermal Characteristics of Silicone Composites for the Application to Heat-Controllable Components (발열제어부품소재 적용을 위한 실리콘 복합조성물의 열전도 특성)

  • Kwak, Ho-Du;Oh, Weontae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.116-121
    • /
    • 2019
  • Hexagonal boron nitride particles (s-hBN) modified with 3-aminopropyl triethoxysilane (APTES) were used for the preparation of silicone composite materials. The microstructure of the composite materials was observed, and the thermal conduction and mechanical characteristics of the composite sheets were studied based on the compositions and microstructures. When a small amount of s-hBN particles was used, the thermal conductivity of the composite improved as a whole, and the tensile strength of the sheet also increased. The thermal conductivity and tensile strength of the composite in which a small amount of carbon fiber was added along with s-hBN were further improved. However, the use of carbon nanotubes with structural characteristics similar to those of carbon fiber resulted in lower thermal conductivity and tensile strength. Elastic silicone composites exhibiting 2.5 W/mK of thermal conductivity and a low hardness are expected to be used as thermally conductive interfacial sheet materials.

Bi-Te Core/Shell Nanowires Synthesis Based on On-Film Formation of Nanowires Method for Thermoelectric Applications (압축응력에 의한 박막 위 나노선 성장법을 이용한 Bi-Te 코어/쉘 열전 나노선 합성)

  • Kang, Joohoon;Ham, Jinhee;Roh, Jong Wook;Noh, Jin-Seo;Lee, Wooyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.445-448
    • /
    • 2010
  • For an enhanced thermoelectric performance, one-dimensional heterostructure nanowires were created that consisted of aBi core and Te shell. The structure was fabricated by depositing Te in-situ onto a Bi nanowire grown by our unique OFF-ON (on-film formation of nanowires) method. After examining a cross-sectional TEM image, it was found that diffusive interface was formed between Bi and Te. Selected area electron diffraction revealed that the crystallinity of the Te shell was some what lower compared to the highly single-crystalline Bi core. The Bi-Te core/shell nanowires can be a smart structure that suppresses phonon transport by several scattering mechanisms, making the OFF-ON method the simplest way to realize that structure.

Thermal Conductivity in Individual Single-Crystalline PbTe Nanowires (단결정 PbTe 단일 나노선의 열전도도)

  • Roh, Jong Wook;Jang, So Young;Kang, Joohoon;Lee, Seunghyun;Noh, Jin-Seo;Park, Jeunghee;Lee, Wooyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.175-179
    • /
    • 2010
  • We investigated the thermal conductivity of individual single-crystalline PbTe nanowires grown by chemical vapor transport method. Suspended MEMS was utilized to precisely measure the thermal conductivity of an individual nanowire. The thermal conductivity of a PbTe nanowire with diameter of 292 nm was measured to be $1.8W/m{\cdot}K$ at 300 K, which is about two thirds of that of bulk PbTe. This result indicates that the thermal conduction through a PbTe nanowire is effectively suppressed by the enhanced phonon boundary scattering. As the diameter of a PbTe nanowire decreases, the corresponding thermal conductivity linearly decreases.

MEMS Pressure Sensor Technology and Industry Trends (MEMS 압력센서의 기술 및 산업동향)

  • Je, C.H.;Choi, C.A.;Lee, S.Q.;Yang, W.S.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.6
    • /
    • pp.21-30
    • /
    • 2015
  • 압력센서란 두 물체 간의 상호 작용하는 힘의 크기를 나타내는 물리적 양을 측정하는 디바이스로서 힘의 전달 크기, 힘의 방향 등을 측정하는 데 매우 광범위하게 사용되고 있는 센서이다. 사용하는 분야는 의료, 자동차, 항공, 공업계측, 가전, 환경제어분야 등의 전반적 산업제품과 산업시설에 응용되고 있으며, 측정원리는 힘의 변화에 따른 재료의 변위, 변형, 진동수, 변화, 열전도율 변화 등을 이용하는 것으로 종전의 기계식 감지방법에서 현재는 센서장치의 소형화를 위하여 반도체소자 제작기술과 Micro Electro Mechanical System(MEMS)기술을 이용하는 초소형, 저전력형 센서개발로 계속 발전하고 있다. 본고에서 멤스(MEMS) 압력센서의 최근 제품 기술 개발과 시장 및 산업동향을 알아보고 향후 더욱더 확장될 압력센서제품 기술의 기초 정보를 제공하고자 한다.

  • PDF

Heat Transfer Analysis of Composite Materials Using MLS Finite Difference Method (MLS 유한차분법을 이용한 복합재료의 열전달문제 해석)

  • Yoon, Young-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.2-7
    • /
    • 2008
  • A highly efficient moving least squares finite difference method (MLS FDM) for heat transfer analysis of composite material with interface. In the MLS FDM, governing differential equations are directly discretized at each node. No grid structure is required in the solution procedure. The discretization of governing equations are done by Taylor expansion based on moving least squares method. A wedge function is designed for the modeling of the derivative jump across the interface. Numerical examples showed that the numerical scheme shows very good computational efficiency together with high aocuracy so that the scheme for heat transfer problem with different heat conductivities was successfully verified.

  • PDF

Electro-Thermal Characteristics of Hole-type Phase Change Memory (Hole 구조 상변화 메모리의 전기 및 열 특성)

  • Choi, Hong-Kyw;Jang, Nak-Won;Kim, Hong-Seung;Lee, Seong-Hwan;Yi, Dong-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.131-137
    • /
    • 2009
  • In this paper, we have manufactured hole type PRAM unit cell using phase change material $Ge_2Sb_2Te_5$. The phase change material $Ge_2Sb_2Te_5$ was deposited on hole of 500 nm size using sputtering method. Reset current of PRAM unit cell was confirmed by measuring R-V characteristic curve. Reset current of manufactured hole type PRAM unit cell is 15 mA, 100 ns. And electro and thermal characteristics of hole type PRAM unit cell were analyzed by 3-D finite element analysis. From simulation temperature of PRAM unit cell was $705^{\circ}C$.

C0$_{2}$ 레이저를 이용한 스테인리스강의 절단특성

  • 이준호;김규태;나일;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.23-27
    • /
    • 1993
  • 스테인리스강은 내식성, 내열성, 내산화성이 좋으므로 화학산업, 의학용기, 고정밀 산업 등에서 많이 사용되고 있다. 스테인리스강은 열전도율이 낮고 용융물의 점성이 크고 가공경화가 심하기 때문에 인코넬 티탄합금 등과 함께 난삭재로 알려져 있다. 스테인리스강의 고합금강을 사용한 기계가공은 공구의 마모가 심하게 일어나므로 가 공이 어렵다. 화염절단(Flame dutting)도 합금물의 버닝(burning)현상을 막는 성질 때문에 잘쓰이지 않고 플라 즈마-아크(plasma-arc) 절단은 수중에서 이루어질 경우 절단끝이 산화되지 않는 좋은 절단면을 얻을 수 있으나 수중에서 사용해야 하는 어려움이 있다. 레이저를 이용한 가공은 절단폭이 작아 재료의 손실이 적으며 복잡한 형상의 절단도쉽고 공구의손실이 없는등 많은 장점이 있어서 사용이 증가하고 있다. 본 연구에서는 스테인리스 강의 절단메커니즘에대한 이해를 돕기 위해 절단가공에 큰 영향을 끼치는 레이저 출력, 절단속도, 절단가스의 압력, 재질, 절단두께를 절단변수로채택하여 절단을 수행하였다. 절단결과를 비교 검토하여 절단변수가 절단에 미치는 영향을 분석하였고 최적의 절단을 얻는 가공조건을 제시하였다.