DOI QR코드

DOI QR Code

Bi-Te Core/Shell Nanowires Synthesis Based on On-Film Formation of Nanowires Method for Thermoelectric Applications

압축응력에 의한 박막 위 나노선 성장법을 이용한 Bi-Te 코어/쉘 열전 나노선 합성

  • Kang, Joohoon (Department of Materials Science and Engineering, Yonsei University) ;
  • Ham, Jinhee (Department of Materials Science and Engineering, Yonsei University) ;
  • Roh, Jong Wook (Department of Materials Science and Engineering, Yonsei University) ;
  • Noh, Jin-Seo (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
  • 강주훈 (연세대학교 신소재공학과) ;
  • 함진희 (연세대학교 신소재공학과) ;
  • 노종욱 (연세대학교 신소재공학과) ;
  • 노진서 (연세대학교 신소재공학과) ;
  • 이우영 (연세대학교 신소재공학과)
  • Received : 2009.10.29
  • Published : 2010.05.22

Abstract

For an enhanced thermoelectric performance, one-dimensional heterostructure nanowires were created that consisted of aBi core and Te shell. The structure was fabricated by depositing Te in-situ onto a Bi nanowire grown by our unique OFF-ON (on-film formation of nanowires) method. After examining a cross-sectional TEM image, it was found that diffusive interface was formed between Bi and Te. Selected area electron diffraction revealed that the crystallinity of the Te shell was some what lower compared to the highly single-crystalline Bi core. The Bi-Te core/shell nanowires can be a smart structure that suppresses phonon transport by several scattering mechanisms, making the OFF-ON method the simplest way to realize that structure.

Keywords

Acknowledgement

Supported by : 한국연구재단, 교육과학기술부, 서울시

References

  1. D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, Sections E & G. (1995)
  2. B. C. Sales, Science 295, 1248 (2002) https://doi.org/10.1126/science.1069895
  3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008) https://doi.org/10.1126/science.1156446
  4. T. M. Tritt, Science 272, 1276 (1996) https://doi.org/10.1126/science.272.5266.1276
  5. H. J. Goldsmid, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, p.19 (1995)
  6. J. Heremans, C. M. Thrush, Y. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Mansfield, Phys. Rev. B61, 2921 (2000)
  7. Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying, and J. Heremans, Phys. Rev. B61, 4850 (2000)
  8. F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science 284, 1335 (1999) https://doi.org/10.1126/science.284.5418.1335
  9. Y. M. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B62, 4610 (2000)
  10. M. W. Oh, H. Inui, M. C. Kim, M. H. Oh, and D. M. Wee, J. Kor. Inst. Met. & Mater. 44, 373 (2006)
  11. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001) https://doi.org/10.1038/35098012
  12. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, Science 297, 2229 (2002) https://doi.org/10.1126/science.1072886
  13. W. Y. Shim, J. H. Ham, K. I. Lee, W. Y. Jeung, Mark Johnson, and W. Y. Lee, Nano Letters 9, 18 (2009) https://doi.org/10.1021/nl8016829
  14. J. H. Ham, W. Y. Shim, D. H. Kim, S. H. Lee, J. W. Roh, S. W. Sohn, K. H. Oh, P. W. Voorhees, and W. Y. Lee, Nano Letters 9, 2867 (2009) https://doi.org/10.1021/nl9010518
  15. J. H. Kang, J. W. Roh, J. H. Ham, and W. Y. Lee, Nature Materials, submitted