Processing math: 100%
  • Title/Summary/Keyword: 열전도도 측정

Search Result 273, Processing Time 0.025 seconds

Thermoelectric properties of (Bi,;Sb)2;(Te,;Se)3-based thin films and their applicability to temperature sensors ((Bi,;Sb)2;(Te,;Se)3계 박막의 열전 특성 및 온도 센서로의 응용)

  • 한승욱;김일호;이동희
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.69-76
    • /
    • 1997
  • P-type (Bi0.5Sb1.5Te3) and n-type (Bi2Te2.4Se0.6) thermoelectric thin film were deposited on glass and Teflon substrates by the flash evaporation technique. The changes in thermoelectric properties, such as Seebeck coefficient, electrical conductivity, carrier concentration, carrier mobility, thermal conductivity, and figure of merit, were investigated as a function of film thickness and annealing condition. Figures of merit of the thin films annealed at 473 K for 1 hour were improved to be 1.3×103K1 for p-type and 0.3×103K1 for n-type, and they were almost independent of film thickness. Temperature sensors were fabricated from the thin films having the above mentioned properties. And thermo-emf, sensitivity, and time constant of the sensors were measured to evaluate their characteristics for temperature sensors. Thin film sensors deposited on Teflon substrates showed better performance than those on glass substrates, and their sensitivity and time constant were 2.91 V/W and 28.2 sec respectively for the sensor of leg width 1 mm×length 16 mm.

  • PDF

Thermal Properties of Rocks in the Republic of Korea (한국의 암석 열물성)

  • Park, Jeong-Min;Kim, Hyoung-Chan;Lee, Young-Min;Shim, Byoung-Ohan;Song, Moo-Young
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.591-598
    • /
    • 2009
  • We made 2511 thermal property measurements on igneous, metamorphic, and sedimentary rock samples from Korea. The average thermal conductivities of igneous, metamorphic, and sedimentary rocks are 3.10 W/m-K, 3.76 W/m-K, and 3.54 W/m-K, respectively. Igneous rock can be classified into pluton, hypabyssal rock, and volconic rock; the average thermal conductivities of those rock types are 3.16 W/m-K, 3.26 W/m-K, and 2.77 W/m-K, respectively. Nonclastic sedimentary rock has higher thermal conductivity than clastic sedimentary rock. Thermal conductivity of Palezoic era rock is higher than Mesozoic era rock, because dominant mineral contents play an important role in the determination of thermal conductivity. Thermal conductivity of rocks is influenced by porosity. Therefore thermal conductivity of sedimentary rocks generally decreases with increasing porosity. Thermal conductivity and thermal diffusivity show linear correlation, its correlation coefficient of igneous, metamorphic, and sedimentary rocks are 0.775, 0.855, and 0.876, respectively.

Residual Stress Distribution on the Fillet Weldment used by Finite Element Method (유한요소법을 이용한 필렛용접 이음부의 잔류응력분포)

  • Kim, Hyun Sung;Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.197-207
    • /
    • 2000
  • A transient heat transfer analysis and thermo-elastic analysis have been performed for the residual stress distribution on the fillet weldment used by finite element method. Specimen is fabricated single-pass fillet welding. This computation was performed for conditions including surface heat flux and temperature dependent thermo-physical properties using by heat input as parameter. Also, cut-off temperature of residual stress estimation by thermo-elastic analysis is determined. The fillet weldment were measured to determined their residual stress distributions for using hole-drilling method. As result, it was found that large tensile residual stress is about material yield strength, and the numerical simulation results for finite element method similar to residual stresses by hole-drilling method and other exiting research. Also, cut-off temperature is effectively determined by temperature which calculated maximum thermal stress equal to material yield strength.

  • PDF

Novel Accuracy Enhancement Method for Absolute Temperature Measurement Using TEC-LESS Control in Uncooled Thermal Imaging (비냉각 열상시스템에서 TEC-Less를 이용한 절대온도 측정 정밀도 향상 기법)

  • Han, Joon Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.41-47
    • /
    • 2012
  • Every object over OK emits radiant energy based on its own temperature. Uncooled thermal imaging system displays the detected incident radiant energy as an image by signal processing. Recently, the uncooled thermal imaging system is applied to various areas such as medical, industrial, and military applications. Also, several researches are in progress to find new applications of the uncooled thermal imaging system. In this paper, we present effective method for controlling TEC-less detector in the uncooled thermal imaging system and also present the efficient control scheme for maximizing the accuracy of temperature measurement. The proposed scheme is to apply TEC-less and temperature detection algorithm in Uncooled thermal imaging system. In results of tests performed by using the actual chamber, we acquired images of better quality than the former system and temperature measurement accuracy was improved to less than 1C.

Effects of Reinforcing Fillers on Far-infrared Vulcanization Characteristics of EPDM (보강제에 따른 EPDM의 원적외선 가교 특성 연구)

  • Kim, J.S.;Lee, J.H.;Jung, W.S.;Bae, J.W.;Park, H.C.;Kang, D.P.
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • EPDM(Ethylene-propylene-diene-terpolymer) compound reinforced with carbon black having four different particle size, acetylene black(thermal conductivity carbon black), and silica were manufactured by internal mix and open mill. To investigate the effect of particle size of filler and filler type on far-infrared vulcanization, intermal temperature of compound, degree of curing, infrared spectroscopy, and thermal analysis were measured. The thermal conductivity of far-infrared vulcanized EPDM compound increased with increasing particle size of carbon filler, but hot air vulcanized EPDM compound is not affected by particle size. The thermal conductivity was increased in the order of carbon black < silica < acetylene black(thermal conductivity carbon black).

Conjugate Natural Convection in Double Enclosed Annuli Between Horizontal Concentric Cylinders (水平 同心圓二重 環狀密閉 空間에서의 Conjugate 自然對流 熱傳達)

  • 손병진;강희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.430-439
    • /
    • 1985
  • Conjugate natural convection in double enclosed annuli between horizontal concentric cylinders has been studied by the numerical analysis and experimental measurements. The interface conditions between the liquid and the solid of middle shell are obtained through the correlation factor based on the ratio of solid to fluid thermal conductivities and the Prandtl number. The characteristics of conjugate heat transfer are discussed under various dimensionless parameters such as conductivity ratios, shell thickness, diameter ratios, Prandtl number, and Rayleigh number. It is found that the average equivalent conductivity K over var eq does not depend on the conductivity ratios and shell thickness. The K over bar eq however, depends on the Prandtl number and the Rayleigh number.

Fabrication of Porous Al2O3 Ceramics Using Thermoplastic Polymer (열가소성 고분자를 이용한 다공질 알루미나의 제조)

  • 이상진;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.513-517
    • /
    • 2004
  • Porous alumina ceramics with aligned plate-shaped pores were fabricated by using thermoplastic microsphere in order to show the anisotropy in thermal conductivity. The mixed powder of alumina and microsphere was pressed under 15 MPa till 200C to deform polymer into platelet-shape and sintered at 1,000C for 1 h. The sintered specimen with 10 wt% microsphere has 45.3% porosity and the bending strength of 44 MPa. The microstructural investigation confirmed the pore structure of platelet-shape, the thermal conductivities for vertical and parallel directions are 3.803 W/mK and 7.818 W/mK, respectively, the ratio between two directions exceeds 2.

Construction Broadband CARS Spectrometer and Uncertainty Analysis of Temperature Measurement (광대역 CARS 분광기의 제작과 온도 측정의 정확도 분석)

  • 박승남
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.226-232
    • /
    • 1993
  • A broadband CARS system is constructed for shot by shot measurement of a full CARS spectrum, which consists of a frequency doubled Nd:Yag laser, broadband mode-less laser and optical multi-channel analyzer installed in a double grating monochromator. To increase the accuracy of CARS temperature measurement and get better the fitting goodness, we have measured the slit function of the detection system and determined the analytical functional form of the slit function. Accuracy of the CARS system for temperature measurement is evaluated from the difference between the best-fit temperature of CARS spectrum and temperature of thermocouple reading. The uncertainty of the temperature measurement is found to be less than 1.5% in temperature range from 300 K to 1300 K.

  • PDF

Thermoelectric Composites Based on Carbon Nanotubes and Micro Glass Bubbles (탄소나노튜브 및 마이크로 글래스 버블 기반 열전 복합재)

  • Kang, Gu-Hyeok;Seong, Kwangwon;Kim, Myungsoo;Kim, In Guk;Bang, In Cheol;Park, Hyung Wook;Park, Young-Bin
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, carbon nanotubes (CNTs) and micro glass bubbles (GBs) have been incorporated into a polyamide6 (PA6) matrix to impart thermoelectric properties. The spaces created in the matrix by GBs allows the formation of "segregated" CNT network. The tightly bound CNT network, if controlled properly, can serve as a conductive path for electron transport, while prohibiting phonon transport, which would provide an ideal configuration for thermoelectric applications. The CNTs and GBs were dispersed in a nylon-formic acid solution using horn sonication followed by coagulation in deionized water, and nanocomposite panels were fabricated using a hot press. The performance of nanocomposite panels was evaluated from thermal and electrical conductivities and Seebeck coefficient, and a thermoelectric figure of merit as high as 0.016 was achieved.

Effect of the Alignment of Milled Carbon Fiber Dispersed in Various Solvents (Solvent 별 분산에 따른 Milled Carbon Fiber의 배열성 연구)

  • Lee, Sung-Kwon;Choi, Sung-Woong
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.47-51
    • /
    • 2022
  • In order to efficiently control the heat generation of electronic devices, many research has been conducted on thermally conductive composite materials. In this study, milled carbon fiber was dispersed in four solvent to investigate the relationship of carbon fiber alignment according to dispersion by solvents, and carbon fiberreinforced composite material(CFRP) was manufactured using vacuum filtration. To evaluate the arrangement of CFRP the arrangement of the prepared specimen was observed under an optical microscope, and thermal conductivity was measured by Laser Flash Analysis. The Through-plane thermal conductivity of CFRP using NMP and Ethanol was 10.79 W/mK and 10.57 W/mK respectively, which were improved by 218% and 209% compared to the In-plane thermal conductivity. The high viscosity of the solvent greatly affects the shear of the fluid, and it seemed to determine the alignment of the filler.