Thermal Properties of Rocks in the Republic of Korea

한국의 암석 열물성

  • Park, Jeong-Min (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Hyoung-Chan (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Young-Min (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Shim, Byoung-Ohan (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Moo-Young (Chungnam National University)
  • 박정민 (한국지질자원연구원 지열연구실) ;
  • 김형찬 (한국지질자원연구원 지열연구실) ;
  • 이영민 (한국지질자원연구원 지열연구실) ;
  • 심병완 (한국지질자원연구원 지열연구실) ;
  • 송무영 (충남대학교)
  • Published : 2009.12.28

Abstract

We made 2511 thermal property measurements on igneous, metamorphic, and sedimentary rock samples from Korea. The average thermal conductivities of igneous, metamorphic, and sedimentary rocks are 3.10 W/m-K, 3.76 W/m-K, and 3.54 W/m-K, respectively. Igneous rock can be classified into pluton, hypabyssal rock, and volconic rock; the average thermal conductivities of those rock types are 3.16 W/m-K, 3.26 W/m-K, and 2.77 W/m-K, respectively. Nonclastic sedimentary rock has higher thermal conductivity than clastic sedimentary rock. Thermal conductivity of Palezoic era rock is higher than Mesozoic era rock, because dominant mineral contents play an important role in the determination of thermal conductivity. Thermal conductivity of rocks is influenced by porosity. Therefore thermal conductivity of sedimentary rocks generally decreases with increasing porosity. Thermal conductivity and thermal diffusivity show linear correlation, its correlation coefficient of igneous, metamorphic, and sedimentary rocks are 0.775, 0.855, and 0.876, respectively.

본 연구에서는 남한일대에서 화성암, 변성암, 퇴적암의 총 2511개의 암석을 채취하여 열물성을 측정하고 각 암종별로 일반적인 통계분석을 실시하였다. 화성암, 변성암, 퇴적암의 평균 열전도도는 각각 3.10W/m-K, 3.76W/m-K, 3.54W/m-K 이다. 화성암의 암석 분류에 따라 심성암, 반심성암, 화산암으로 분류하였으며, 각각의 평균 열전도도는 3.16 W/m-K, 3.26 W/m-K, 2.77 W/m-K이다. 퇴적암에서 쇄설성 퇴적암 보다 비쇄설성 퇴적암의 열전도도가 비교적 높은 분포를 보이고 있다. 측정된 암석의 시대별 열전도도는 고생대가 중생대 보다 높은 나타나며, 이는 높은 열전도도를 갖는 구성 광물에 의한 것으로 판단된다. 암석의 공극률은 열전도도에 영향을 미치는 요소이며 퇴적암의 경우 공극률이 증가할 수록 열전도도는 대체적으로 감소하는 경향을 보인다. 암석의 열전도도와 열확산율은 선형의 상관관계를 보이며, 화성암, 변성암, 퇴적암의 선형 회귀분석 상관계수는 각각 0.775, 0.855 0.876로 높은 값을 보인다.

Keywords

References

  1. Beardsmore, G. R. and Cull, J. P. (2001) Crustal heatflow: A guide to measurement and modeling, CambridgeUniv. Press, 324p
  2. Birch, F. and Clark, H. (1940) The thermal conductivityof rocks and its dependance upon temperature andcomposition, Am. J. Sci., v.238, no.8, p.529-558 https://doi.org/10.2475/ajs.238.8.529
  3. Cermak, V. and L. Rybach. (1982) Thermal conductivityand specific heat of minerals and rocks, in Physicalproperties of rocks, vol. 1-a, Landolt-Bornstein,edited by G. Angenheister, Springer-Verlag, New York pp.305-403
  4. Clauser, C. and Hueges, E. (1995) Rock physics & phaserelations: A handbook of physical contents, in T. J.Ahrens, (ed.), AGU, p.105-125
  5. Herrin, J. M. and Deming, D. (1996) Thermal conduc-tivity of U.S. coals, J. Geophy. Res., v.101, no.B11,p.25381-25386 https://doi.org/10.1029/96JB01884
  6. Hwang, J., Chi, K., Cheng, W. S., Hong, Y. and Ryu, K. H.(2007) Design and development of a granite informationsystem prototype, Econ. Environ. Geol., v.40,no.2, p.251-262
  7. Kim, H. C. (2004) Interpretation of geothermal anomalyusing heat flow and geological data in south Korea, Ph. D, thesis, Chungnam Nat. Univ, 123p
  8. Koh, I. S. and Shin, Y. S. (1995) Chemical composition ofthe cretaceous sandstones in Goryeong area, SoutheastKorea, Jour. Korean Earth Science Society., v.16,no.5, p.408-419
  9. Park, H. M., Ryu, C. and Kim, H. S. (1998) Sandstonediagenesis of the lower permian Jangseong formation,Jangseong area, Samcheog coalfield, Jour. Petrol. Soc.Korea., v.7, no.2, p.132-145
  10. Park, J., Kim, H. C., Lee, Y. and Song, M. Y. (2007) Astudy on thermal properties of rocks from Gyeonggido,Gangwon-do, Chungchung-do, Korea, Econ. Environ.Geol., v.40, no.6, p.761-769
  11. Parker, W. J., Jenkins, R. J., Buter, C. P. and Abbott, G. L.(1961) Flash method of determining thermal diffusivity,heat capacity and thermal conductivity, J. Appl.Phys., v.32, no.9, p.1679-1684 https://doi.org/10.1063/1.1728417
  12. Robertson, E. C. (1988) Thermal properties of rocks, U.S.G.S. Open file report 88-441, U. S. Geol. Survey,Reston, Va., 70p
  13. Song, Y., Kim, H. C. and Lee, S.-K. (2006) Geothermalresearch and development in Korea, Econ. Environ.Geol., v.39, no.4, p.485-494
  14. Song, Y., Kim, S. K., Lee, K. K. and Lee, T. J. (2009) Effect of initial ground temperature measurement onthe design of borehole heat exchanger, Korean Societyfor New and Renewable Energy conference, 101p.in proceeding
  15. Swan, A. R. H. and Sandilands, M. (1995) Introduction to geological data analysis, Blackwell Science Ltd, 446p
  16. VDI., (2000), Thermal use of the underground; fundamentals,approvals, environmental aspects, 157p
  17. Vosteen, H.-D. and R. Schellschmidt., (2003) Influence oftemperture on thermal conductivity, thermal capacityand thermal diffusivity for difference types of rock, Phys. Chem. Earth, v.28, p.499-509 https://doi.org/10.1016/S1474-7065(03)00069-X
  18. Woodside, W. H. and Messmer, J. H. (1961) Thermal conductivityof porous media: 2. Consolidated rocks, J.Appl. Phys., v.32, p.1699-1706 https://doi.org/10.1063/1.1728420