Understanding Chemical Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern using Factor and Cluster Analyses

인자 및 군집분석을 통한 해안 LPG공동 유출수 및 지하수 수질특성의 이해

  • Jo, Yun-Ju (Department of Geology, Kangwon National University) ;
  • Lee, Jin-Yong (Department of Geology, Kangwon National University)
  • Published : 2009.12.28

Abstract

This study was conducted to examine chemical characteristics and correlations among seepage water, subsurface waters and inland groundwater in and around a coastal underground LPG cavern using factor and cluster analyses. The study area is located in western coast of Incheon metropolitan city and is about 8 km off the coast. The LPG cavern storing propane and butane was built beneath artificially reclaimed island. Mean bathymetry is 8.5 m and maximum sea level change is 10 m. Water sampling was conducted in May and August, 2006 from 22 sampling points. Correlation analysis showed strong correlations among $Fe^{2+}$ and $Mn^{2+}$ (r=0.83~0.99), and Na and Cl (r=0.70~0.97), which indicated reductive dissolution of iron and manganese bearing minerals and seawater ingression effect, respectively. According to factor analysis, Factors 1 (May) and I (August) showed high loadings for parameters representing seawater ingression into the cavern and effect of submarine groundwater discharge, respectively while Factors 2 and IV showed high loadings for those representing oxidation condition (DO and ORP). Factors 4 and II have large positive loadings for $Fe^{2+}$ and $Mn^{2+}$. The increase of $Fe^{2+}$ and $Mn^{2+}$ was related to decomposition of organic matter and subsequent their dissolution under reduced condition. Cluster analysis showed the resulting 6 groups for May and 5 groups for August, which mainly included groups of inland groundwater, cavern seepage water, sea water and subsurface water in the LPG storage cavern. Subsurface water (Group 2 and Group III) around the underground storage cavern showed high EC and major ions contents, which represents the seawater effect. Cavern seepage water (Group 5 and Group II) showed a reduced condition (low DO and negative ORP) and higher levels of $Fe^{2+}$ and $Mn^{2+}$.

본 연구에서는 해안 LPG 저장공동 유출수 및 지하수, 해수, 저장공동 인근 육지 지하수의 화학적 특성과 성분들간의 상관성을 평가하기 위하여 수질자료에 대한 인자 및 군집분석을 수행하였다. 연구지역은 인천광역시 서해에 속하며 해안가에서 바다 쪽으로 약 8 km 이격해 있는 LPG(프로판 및 부탄) 저장공동으로 평균 수심 8.5 m 내외인 곳에 매립으로 조성된 인공섬이며 조수간만의 차가 최대 10 m로 매우 크다. 시료는 2006년 5월과 8월에 총 22개 지점에서 채취하였다. 상관분석 결과 $Fe^{2+}$$Mn^{2+}$(r=0.83~0.99) 그리고 Na와 Cl(r=0.70~0.97)이 높은 상관성을 보였다. 이는 철 망간을 포함한 광물의 환원성 용해와 해수의 영향으로 판단된다. 인자분석 결과 Factor 1과 Factor I은 EC 및 주요 양 음이온에 높은 양의 적재값을 나타내며 이는 해수의 영향을 지시하는 요인이다. Factor 2와 Factor 는 산화환경을 지시하는 파라미터(DO 및 ORP)에 높은 양의 적재값을 나타내었다. Factor 4와 Factor II는 $Fe^{2+}$, $Mn^{2+}$에 높은 양의 적재값을 나타내었으며, 이는 유기물에 의해 산소가 소모된 혐기성환경에서 철과 망간이 환원되어 $Fe^{2+}$$Mn^{2+}$이 증가하는 작용으로 판단된다. 군집분석 결과 5월에는 6개 군집으로 구분되며 8월에는 5개 군집으로 구분되었다. 두 계절 모두 군집은 저장공동 인근 육지 지하수, 저장공동 내 유출수, 해수 및 저장공동 내 지하수로 대별되었다. 저장공동 인근 육지지하수(Group 2 및 Group III)는 EC 및 주요 양 음이온의 값이 높은 것으로 보아 해수침투의 영향으로 사료된다. 유출수의 군집(Group 5 및 Group II)은 모두 음의 산화환원전위와 낮은 용존산소 값으로 환원환경을 지시하며 $Fe^{2+}$$Mn^{2+}$는 높은 값을 나타내었다.

Keywords

References

  1. Chae, G.T., Kim, K., Yun, S.T., Kim, K.H., Kim, S.O.,Choi, B.Y., Kim, H.S. and Rhee, C.W. (2004) Hydrogeochemistryof alluvial groundwaters in an agriculturalarea: an implication for groundwater contaminationsusceptibility. Chemosphere, v.55, p.369-378 https://doi.org/10.1016/j.chemosphere.2003.11.001
  2. Chwae, U., Kim, K.B., Choi, S.J., Yun, Y. and Jin, M.S.(1995) Geological report of the Kimpo-Incheon sheet. Korea Institute of Geoscience and Mineral Resources,12p
  3. Greenwood, J.E., Truesdale, V.W. and Rendell, A.R.(2001) Biogenic silica dissolution in seawater - invitro chemical kinetics. Progress in Oceanography,v.48, p.1-23 https://doi.org/10.1016/S0079-6611(00)00046-X
  4. Hamm, S.Y., Kim, K.S., Lee, J.H., Cheong, J.Y., Sung, I.H.and Jang, S. (2006) Characteristics of groundwaterquality in Sasang industrial area, Busan metropolitancity. Economic and Environmental Geology, v.39,p.735-770
  5. Hem, J.D. (1992) Study and interpretation of the chemicalcharacteristics of natural water. USGS, 263p
  6. Jeen, S.W., Kim, J.M., Ko, K.S., Yum, B.W. and Chan,H.W. (2001) Hydrochemical characteristics of groundwaterin a mid-westerm coastal aquifer system,Korea. Geosciences Journal, v.5, p.339-348 https://doi.org/10.1007/BF02912705
  7. Jeong, C.H. (2004) Relationship between hydrochemicalvariation of groundwater and gas tightness in theunderground oil storage caverns. The Journal of EngineeringGeology, v.14, p.259-272
  8. Jo, Y.J., Lee, J.Y., Choi, M.J. and Cho, B.W. (2009a) Characteristicsof seepage water and groundwater inIncheon coastal LPG storage cavern. The Journal of Engineering Geology (submitted)
  9. Jo, Y.J., Yun, J.Y., Choi, M.J., Cho, B.W. and Lee, J.Y.(2009b) A study of characteristics of groundwater inIncheon coastal LPG storage cavern. Proceeding ofthe 2008 spring joint symposium on geosciences, Busan BEXCO, p.277
  10. Kang, J.G., Yang, H.S., Kim, Y.K. and Kim, C.S. (2003) Groundwater flow characterization in the vicinity ofthe underground caverns by groundwater level changes.Tunnel and Underground Space, v.13, p.465-475
  11. Kim, D.K., Oh, D.H. and Jeong, C.G. (1999) LPG cavernin Inchon, Korea. The Journal of Engineering Geology,v.9, p.267-280
  12. Kim, J.T., Park, S.J., Kang, M. and Choo, C.O. (2007) Analysis on statistical relationship between groundwaterquality and geology. The Journal of EngineeringGeology, v.17, p.445-453
  13. KWRC (Korea Water Resources Corporation) (2005) A report of groundwater basic survey in Incheon, p.9-20
  14. Lee, B.J., Moon, S.H., Park, K.H., Koh, D. and Koh, K.W.(2002) Hydrogeochemical characteristics of the springwaters in Jeju. Journal of the Geological Society ofKorea, v.38, p.421-439
  15. Lee, B.S. and Woo, N.C. (2003) The effects of bed-rockformations on water quality and contamination : statisticalapproaches. Economic and Environmental Geology, v.36, p.415-429
  16. Lee, D.K. and Park, J.G. (1999) Regionalization of summerrainfall in South Korea using cluster analysis. Journal of Atmospheric Sciences, v.35, p.511-518
  17. Lee, J.U., Chon, H.T. and Chun, G.T. (1995) Study onhydrogeochemical characteristics of LPG storage cavernin the water curtain system. Proceeding of theGroundwater Environment of Korea, p.41-42
  18. Lee, J.Y., Cheon, J.Y., Lee, K.K., Lee, S.Y. and Lee, M.H.(2001) Statistical evaluation of geochemical parameterdistribution in a ground water system contaminatedwith petroleum hydrocarbons. Journal of Environmental Quality, v.30, p.1548-1563 https://doi.org/10.2134/jeq2001.3051548x
  19. Lee, J.Y. and Cho, B.W. (2008) Submarine groundwaterdischarge into the coast revealed by water chemistryof man-made undersea liquefied petroleum gas cavern.Journal of Hydrology, v.360, p.195-206 https://doi.org/10.1016/j.jhydrol.2008.07.031
  20. Lee, J.Y., Cho, B.W., Choi, M.J., Lim, H.S. and Lee, K.K.(2008) Evaluation of groudwater in LPG storage cavern. Proceeding of the 2008 spring joint symposiumon geosciences, Seoul COEX, p.82
  21. Lee, J.Y., Kim, H.S., Yun, S.T. and Kwon, J.S. (2009a) Factorand Cluster Analyses of Water Chemistry in andaround a Large Rockfill Dam: Implications for WaterLeakage. Journal of Geotechnical and GeoenvironmentalEngineering. v.135, p.1254-1263 https://doi.org/10.1061/(ASCE)GT.1943-5606.0000039
  22. Lee, J.Y., Lim, H.S., Choi, M.J. and Cho, B.W. (2009b) Identification and characterization of the encrustingmaterials in a coastal liquefied petroleum gas storagecavern. Environmental Earth Sciences (revised) https://doi.org/10.1007/s12665-009-0439-0
  23. Moon, J.T., Kim, K., Kim, S.H., Jeong, C.S. and Hwang,G.S. (2008) Geochemical investigation on arsenic contaminationin the alluvial groundwater of MankyeongRiver watershed. Economic and Environmental Geology,v.41, p.673-683
  24. Moon, S.K., Woo, N.C. and Lee, K.S. (2002) A study onthe relation between types and recharges of groundwater: analysis on national groundwater monitoringnetwork data. Soil and Groundwater Environment. v.7, p.45-59
  25. Oh, I., Ko, K.S., Kong, I.C. and Ku, M.H. (2008) Assessmentof hydrogeochemical characteristics and contaminantdispersion of aquifer around Keumsanmunicipal landfill. Environmental Geology, v.41,p.657-672
  26. Park, J.K., Lee, J.Y. and Kim, T.D. (2008) Statistical evaluationof groundwater quality around an uncontrolledlandfill: implication for plume migration pathways.Geosciences Journal, v.12, p.205-308 https://doi.org/10.1007/s12303-008-0021-x
  27. Suk, H. and Lee, K.K. (1999) Characterization of aground water hydrochemical system through multivariateanalysis: clustering into ground water zones.Ground Water, v.37, p.358-366 https://doi.org/10.1111/j.1745-6584.1999.tb01112.x