• 제목/요약/키워드: 열전달촉진계수

검색결과 59건 처리시간 0.023초

웨이브 및 웨이브-슬릿 열전달촉진 휜-관 열교환기의 공기측 압력강하 및 열전달 특성에 관한 실험 (Experimental study of air side pressure drop and heat transfer characteristics of wave and wave-slit fin-tube heat exchangers)

  • 윤백;길용현;박현연;유국철;김영생
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.589-599
    • /
    • 1998
  • Air side heat transfer and pressure drop for fin-tube heat exchanger with wave and wave-slit fins were measured for various fin spacings and number of tube rows. Outer diameter of the tube including fin collar is 10.07mm, and experiments were done with dry surface condition. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively, and wave depth of the wave fin is 2mm. Experiments were conducted for 1, 2 and 3 rows and 3 different fin spacings, 1.3, 1.5 and 1.7mm. An attempt was made to demonstrate advantage of the enhanced fins over the plane fin by introducing the concept of fan power, Effect of the number of tube rows on heat transfer was discussed in connection with general mechanisms of heat transfer enhancement for fin-tube heat exchanger. Also the effect of hydrophilic coating was investigated. Lastly, correlations for Colburn j-factor and friction factor were developed.

  • PDF

마이크로핀 관의 기하학적 형상면화에 대한 열전달 특성(II) -증발 열전달- (Heat transfer with geometric shape of micro-fin tubes (II) -Evaporating heat transfer-)

  • 곽경민;장재식;배철호;정모
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.789-798
    • /
    • 1999
  • The evaporating heat transfer experiments with refrigerant HCFC 22 are performed for performance evaluation using 4 and 6 kinds of microfin tubes with outer diameter of 9.52mm and 7.0mm, respectively. Used microfin tubes have different shape and number of fins with each other, The experimental results are represented with effects of quality, mass flux and EPR. The evaporating heat transfer characteristics are represented by the existence of not only heat transfer area and turbulence promotion effect but also additional other enhancement mechanism, which are the overflow of the refrigerant over the microfin and microfin arrangement. Microfin tubes having a shape which can give much overflow over the microfin show large evaporating heat transfer coefficients. The effect of refrigerant overflow is much severe in evaporation than condensation. The effect of microfin arrangement is related to overflow effect of the refrigerant over the microfin.

  • PDF

마이크로핀 관의 기하학적 형상변화에 대한 열전달 특성 (I) - 응축 열전달 - (Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer -)

  • 곽경민;장재식;배철호;정모
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.774-788
    • /
    • 1999
  • To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52mm and 7.0mm, respectively. Used microfin tubes have different shape and number of fins with each other The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. Microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film.

  • PDF

Thermoexcel-E 촉진 표면에서 임계 열유속까지의 분무 냉각 열전달 특성 (Heat Transfer Characteristics of Spray Cooling Up to Critical Heat Flux on Thermoexcel-E Enhanced Surface)

  • 이요한;홍광욱;이준수;정동수
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.373-380
    • /
    • 2016
  • Spray cooling is a technology of increasing interest for electronic cooling and other high heat flux applications. In this study, heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater of $9.53{\times}9.53mm$ at $36^{\circ}C$ in a pool, a smooth flat surface and Thermoexcel-E surfaces are used to see the change in HTCs and CHFs according to the surface characteristics and FC-72 is used as the working fluid. FC-72 fluid has a significant influence on heat transfer characteristics of the spray over the cooling surface. HTCs are taken from $10kW/m^2$ to critical heat flux for all surfaces. Test results with Thermoexcel-E showed that CHFs of all enhanced surface is greatly improved. It can be said that surface form affects heat transfer coefficient and critical heat flux.

Low-fin 촉진 표면에서 임계 열유속까지의 분무 냉각 열전달 특성 (Heat Transfer Characteristics of Spray Cooling up to Critical Heat Flux on a Low-fin Enhanced Surface)

  • 이요한;강동규;정동수
    • 설비공학논문집
    • /
    • 제25권9호
    • /
    • pp.522-528
    • /
    • 2013
  • Spray cooling is a technology of increasing interest for electronic cooling and other high heat flux applications. In this study, heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) were measured on a smooth square flat copper heater of $9.53{\times}9.53$ mm at $36^{\circ}C$ in a pool, with a smooth flat surface, and 26 fpi. Low-fin surfaces were used to see the change in HTCs and CHFs according to the surface characteristics, and FC-72 was used as the working fluid. FC-72 fluid had a significant influence on the heat transfer characteristics of the spray over the cooling surface. HTCs were taken from 10 $kW/m^2$ to critical heat flux, for all surfaces. Test results with Low-fin showed that the CHFs of all the enhanced surface were greatly improved. It can be said that the surface form affects the heat transfer coefficient and critical heat flux.

탄소나노튜브 사용 풀비등 열전달 촉진 (Enhancement of Pool Boiling Heat Transfer Coefficients with the Use of Carbon Nanotubes)

  • 박기정;정동수
    • 설비공학논문집
    • /
    • 제18권10호
    • /
    • pp.842-849
    • /
    • 2006
  • In this study, the effect of carbon nanotubes (CNTs) on boiling heat transfer is investigated. Three refrigerants of R22, R123, R134a, and water are used as base working fluids and 1% of CNTs by volume is added to the base fluids to study the effect of CNTs. All data are obtained at the pool temperature of $7^{\circ}C$ for all refrigerants and $100^{\circ}C$ for water in the heat flux range of $10{\sim}80\;kW/m^2$. Test results show that CNTs increase the boiling heat transfer coefficients for all fluids. Especially, large enhancement was observed at low heat flutes. With increasing heat flux, however, the enhancement was suppressed due to vigorous bubble generations. Fouling was not observed during the course of this study. Optimum quantity and type of CNTs and their dispersion should be examined for their application in pool boiling heat transfer.

응축부에 그루브를 갖는 회전 히트파이프의 열 전달 특성에 관한 실험적 연구 (An Experimental Study on the Heat Transfer Characteristics for a Rotating Heat pipe with Grooves in Condenser Region)

  • 이진성;김철주;임광빈
    • 에너지공학
    • /
    • 제9권4호
    • /
    • pp.334-341
    • /
    • 2000
  • 회전 히트파이프의 열 전달 특성은 내부 관벽에 형성되는 응축 액막 두께와 증발부로 귀한되는 응축액의 유동율에 의해 결정된다. 본 연구는 축 방향으로 그루브(groove)를 갖는 회전 히트파이프의 열 전달 성능에 대한 실험 연구로써, 그루브에 의한 효과를 파악하기 위해 2종류의 히트파이프를 제작하고 작동성은 시험을 수행하였다. 회전 히트파이프가 작동시, 원심력에 의해 그루브로 응축액의 유동을 촉진시키며, 따라서 응축부 벽면에 형성되는 액막 두께가 얇게 된다. 응축부에 그루브를 갖는 히트파이프의 열전달 계수는 풀 유동에서 2000~4000W/$m^2$$^{0}$ C, 환상 유동 영역에서 1500~2500W/$m^2$$^{0}$ C로써, 전체 원형단면을 갖는 히트파이프와 비교하여 약 1.5배 정도의 열저달 향상을 볼 수 있었으며, 열전달 한계는 약 40% 정도 향상되는 것으로 나타났다.

  • PDF

Wilson Plot을 이용한 만액식 증발기의 열전달계수 측정 (Measurement of Heat Transfer Coefficient in a Flooded Evaporator through Wilson Plot Method)

  • 윤필현;강용태;정진희
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.698-706
    • /
    • 2004
  • Heat transfer coefficients of enhanced tubes in a flooded evaporator are measured through Wilson Plot method. And the correlations are proposed to design a flooded evaporators. Overall heat transfer coefficients are composed of the heat transfer coefficients both inside and outside tubes. Usually the experiments have been conducted separately. But there have been many difficulties like setting up the equipments and measuring the wall temperature. Wilson Plot method makes it possible to measure the separated transfer coefficients at the same equipment through experimental skills. So the cost and time can be reduced. And the results are reliable enough to use for design. Heat transfer coefficients inside the tube were able to be correlated uniquely in spite of various outside conditions. Boiling heat transfer of R134a is more dependent on the saturation temperature and much higher than that of R123.

평관과 마이크로 핀관 내 R22, R134a, R407C, R410A의 흐름응축 열전달성능 (Flow Condensation Heat Transfer of R22, R134a, R407C, and R410A in Plain and Microfin Tubes)

  • 조영목;박기호;송길흥;정동수
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.656-663
    • /
    • 2002
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 9.52 mm outside diameter and 1.0 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of $40^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/$m^2s$. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 11~l5% and 23~53% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 10~21% for a microfin tube. In general, HTCs of a microfin tube were 2.0~3.0 times higher than those of a plain tube.

상변화 물질을 이용한 에너지의 저장에 관한 연구 - 핀이 부착된 열싸이폰의 이용에 관하여 - (Thermal Energy Storage in Phase Change Material - by Means of Finned Thermosyphon -)

  • 김권진;유재석;김기현
    • 태양에너지
    • /
    • 제11권1호
    • /
    • pp.69-77
    • /
    • 1991
  • 파라핀 왁스에 열에너지를 저장하기 위해 열전달 기구로 원판형 핀이 달린 열싸이폰을 사용하였다. 실험은 4, 6, 8개의 핀에 대해 수행되었으며 각각의 경우 왁스의 초기온도와 주입열량을 변화시키면서 실험을 반복하였다. 실험을 통하여 특히 잠열 축열계의 전열경로의 주요지점에서의 열전달 특성을 규명하고자 하였으며 주요 결론은 다음과 같다. (1) 열싸이폰의 열관류율과 총합열관류율은 핀의 수가 증가함에 따라 커지나 핀과 왁스사이의 열전달계수는 감소하였다. (2) 핀에 의해 열전달이 촉진됨으로서 핀이 없는 열싸이폰에서 일어나는 dry-out 현상이 제거되었다. (3) 수평형의 핀은 왁스의 큰 규모의 대류를 억제하며 핀의 수가 증가함에 따라 핀 사이에서의 국소대류도 더욱 억제되었다.

  • PDF