• Title/Summary/Keyword: 열적 안전성

Search Result 144, Processing Time 0.029 seconds

The Study of analysis and test for crash survival about the Crash Protected Module in Black Box used at aircraft (항공기용 블랙박스의 자료보호모듈 극한환경해석 및 시험에 관한 연구)

  • Lee, Sock-Kyu;Lee, Byoung-Ho;Choi, Ji-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.61-68
    • /
    • 2012
  • The purpose of Crash Protected Module in Black Box used at aircraft is to protect a stored information(Flight data & Cockpit Voice) safely even after extreme environment like a plane crash. This study shows the structure & thermal analyses and the comparisons of predictions and results of tests about CPM for Crash Survival through extreme environment such as Penetration Resistance, High Temperature Fire, Low Temperature Fire. Specially, the Effect of housing thickness change was studied through the Penetration Resistance analysis using LS-DYNA, and the influence of volume ratio change between phase change material and thermal insulation material was studied through the High Temperature & Low Temperature analysis using Icepak. Also, structural and thermal reliability of CPM was validated through the tests.

Preparation and Characterization of Sulfonated Poly (Arylene Ether Sulfone) Random Copolymer-Polyolefin Pore-filling Separators with Metal Ion Trap Capability for Li-ion Secondary Battery (리튬이온 이차전지용 금속이온 선택성 술폰화 폴리아릴렌에테르술폰 공중합체-폴리올레핀 함침격리막 제조 및 특성)

  • Jeong, Yeon Tae;Ahn, Juhee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.310-317
    • /
    • 2016
  • Lithium ion secondary battery (LISB) is an energy conversion system operated via charging-discharging cycle based on Lithium ion migration. LISB has a lot of advantages such as high energy density, low self-discharge rate, and a relatively high lifetime. Recently, increasing demands of electric vehicles have been encouraging the development of LISB with high capacity. Unfortunately, it causes some critical safety issues. It includes dendrite formation on negative electrode, resulting in electric shortage problems and battery explosion. Also, the elevated temperatures occurred during the LISB operation induces thermal shrinkage of polyolefin (e.g., polyethylene and polypropylene) separators. Consequently, the low thermal stability leads to decay of LISB performances and the reduction of lifetime. In this study, sulfonated poly (arylene ether sulfone) (SPAES) random copolymers were used as key materials to prepare polyolefin pore-filling separator. The resulting separators were evaluated in the term of metal ion chelation capability associated with dendrite formation, $Li^+$ ion conductivity and thermal durability.

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Thermal Properties and Flame Retardancy of Poly(amic acid)/organoclay Nanocomposites (Poly(amic acid)/organoclay 나노복합체의 열적특성 및 난연성)

  • Kim, Sun;Yoon, Doo-Soo;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.177-185
    • /
    • 2007
  • Polyamic acid(PAA)/organoclay nanocomposites containing phosphorous were prepared by solution blending of phosphorylated PAA(PPAA) and organically modified montmorillonite(O-MMT) as a type of layered clays. The nanocomposites were characterized by FT-IR, DSC, TGA, PCFC, SEM, and XRD. The preparation of nanocomposites was confirmed by FT-IR and XRD. SEM pictures showed that the organoclay was dispersed well in the PAA matrix relatively. XRD results indicated that the O-MMT layers were intercalated. The thermal stability and flame retardancy of O-MMT/PPAA nanocomposites were higher than those of pure PAA. PCFC results also showed that the heat release capacity and total heat release values of O-MMT 4 wt%/PPAA-0.2, 0.4, 0.6 composites were decreased with increasing the mole ratio of phosphorous. It was found that the nanocomposite films had the potential to be used as a fire safe material.

Computational Simulation of Lightning Strike on Aircraft and Design of Lightning Protection System (항공기 낙뢰 전산 시뮬레이션 및 보호시스템 설계)

  • Kim, Jong-Jun;Baek, Sang-Tae;Song, Dong-Geon;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1071-1086
    • /
    • 2016
  • The safety of aircraft can be threatened by environmental factors, such as icing, turbulence, and lightning strike. Due to its adverse effects on aircraft structure and electronic components of aircraft, lightning strike is one of the biggest hazards on aircraft safety. Lightning strike can inject high voltage electric current to the aircraft, which may generate strong magnetic field and extreme hot spots, leading to severe damage of structure or other equipment in aircraft. In this work, mechanism of lightning strike and associated direct and indirect effects of lightning on aircraft were studied. First, on the basis of aircraft lightning regulations provided by Aerospace Recommended Practice (ARP), we considered different lightning waveform and zones of an aircraft. A coupled thermal-electrical computational model of ABAQUS was then used for simulating flow of heat and electric current caused by a lightning strike. A study on fuel tank, with and without lightning protection system, was also conducted using the computational model. Finally, electric current flow on two full scale airframes was analyzed using the EMA3D code.

Implementation of Electrical and Optical characteristics based on new packaging in UV LED (UV LED의 광효율 및 방열성능 향상을 위한 new packaging 특성 연구)

  • Kim, Byoung Chol;Park, Byeong Seon;Kim, Hyeong-Jin;Kim, Yong-Kab
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2022
  • Ultra Violet(UV) is gradually being replaced with LED instead of general UV lamps. However, the light efficiency of UV LED is still lower than that of the general lamp, and the light efficiency is also low. Due to the current environment and technical problems of UV lamps, the LED replacements are gradually being made. In this study, a new package design and analysis were performed to increase the lifetime and performance of UV LEDs. A new packaging for UV LED were designed and implemented. The new packaging for UV LED was constructed to improve light efficiency. And the electrical and optical characteristics were analyzed respectively. To improve the optical efficiency in UV LED package, the Al has been used based on high reflectivity and applying the optimal lens focusing. Compared to the existing silver Ag, the light efficiency was improved by about 30% or more, and it was confirmed that the light output degradation characteristic was improved by about 10% in the newly applied optical device chip.

Analysis of the polychlorinated biphenyls in transformer oils using peak matching method (피크패턴법을 이용한 절연유 중 PCBs 분석)

  • Shin, Sun Kyoung;Kim, Hye-Jin;Chung, David;Jeon, Tae Wan;Kim, Jin Kyoung;Park, Seok Un;Chung, Young Hee;Chung, Il Rok
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.410-418
    • /
    • 2005
  • PCBs had numerous uses such as hydraulic fluid, heat exchange fluid, sealant, lubricant, and carbonless copy paper. They are most likely found in electric utilities, power stations, industrial facilities, electronic manufacturing plants, petrochemical plants, railroad systems, electric equipment repair facilities, mining sites (active or abandoned), and military camps. Due to its outstanding chemical and thermal stabilities and electrical insulation properties, the commercial and industrial products of PCBs, such as Aroclors, Kaneclors, Clophens, Phenaclors etc., had been widely used as thermal oil and transformer oil from 1930s until the 1970s. The transformer oils were analyzed as a main source of polychlorinated biphenyls (PCBs) emission into the environment. Qualitative estimation of oil extracts as carried out with Aroclor 1242, 1248, 1254, 1260. The transformer oils contained the pure and mixed of Aroclor 1242, Aroclor 1254, and Aroclor 1260. Also, commercial screening kit of 20 ppm and 50 ppm were applied to the transformer oil samples.

A Study on Thermal Performance Evaluation Procedures of LNG Fuel Tank (LNG 연료탱크의 단열성능 평가 절차에 관한 연구)

  • Cho, Sang-Hoon;Sim, Myung-Ji;Jung, Young-Jun;Kim, Ik-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.45-52
    • /
    • 2018
  • As guidelines for exhaust gases of ship are reinforced by the International Maritime Organization, the necessity for LNG fuelled ship is emerging. The relevant research is actively progressing to develop technologies and promote commercialization. When the residual quantity of LNG fuel tank is less than 70% by consuming fuel during operation, sloshing should be considered. We applied the Type C LNG fuel tank because medium sized LNG fuelled ships are difficult to equip with re-liquefaction system. Structural integrity and thermal performance are very important, especially in LNG fuel tanks that apply to LNG fuelled ship. Through this study, we proposed evaluation procedure of thermal performance for the Type C LNG tank, and verified the validity and effectiveness of BOR(Boil-Off Rate) test Procedure by comparing and analyzing changes in temperature, pressure, BOG(Boil-Off Gas).

Analytical Study on the Fire Resistance of iTECH Composite Beam (iTECH 합성보의 내화성능에 대한 해석연구)

  • Lim, Yoon Hee;Kang, Seong Deok;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.655-664
    • /
    • 2006
  • The purpose of thisanalytical study of an iTECH composite beam subjected to fire conditions is to determine the beam's fire resistance performance using its load ratio and fire protection as parameters. A composite structural system is expected to have a safer and more economical fire safety design than a mere collection of isolated members.heat transfer analysis was performed on the basis of the finite element program ANSYS 10.0 using an ISO834 standard fire, following the main guidelines proposed by EC1 Part 2.2 and EC4 Part 1.2. To validate the analytical simulation of the iTECH composite beam, comparison of the experimental tests was proposed.

Convergence Study on the Thermal Stress According to the Structure of Automotive Heating Seat (자동차 난방 시트의 구조에 따른 열응력 해석에 대한 융합 연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.169-174
    • /
    • 2019
  • Because the warm and cozy demand of automotive driving seat increases, the research development of heating seat has been actively made. In this study, the thermal stress analysis and the structural analysis were carried out with three kinds of heating seats of A, B and C. By executing the thermal analysis with the same material, model A was shown to have the heat transfer better than model B or model C at the study result. So, it could be seen that the heat transfers became different each other though models had the same material according to the configuration of product. Adding the hot wire in order to expect the safer heating can be better heating, but there is the limit on the aspect considering the capability in contrast to the price of product. Generally, model B is thought to be safest thermally than model A or model C in every respect. As the design data of the automotive heating seat product with the durability and safety acquired by this study result are used, the artistic environment can be promoted by being grafted onto the automotive driving seat.