Thermal Properties and Flame Retardancy of Poly(amic acid)/organoclay Nanocomposites

Poly(amic acid)/organoclay 나노복합체의 열적특성 및 난연성

  • Kim, Sun (Korea Research Institute of Chemical Technology Reliability Assessment Center) ;
  • Yoon, Doo-Soo (Department of Polymer Science & Engineering, Chosun University) ;
  • Jo, Byung-Wook (Department of Chemical Engineering, Chosun University) ;
  • Choi, Jae-Kon (Department of Polymer Science & Engineering, Chosun University)
  • 김선 (한국화학연구원 신뢰성평가센터) ;
  • 윤두수 (조선대학교 공과대학 응용화학소재공학과) ;
  • 조병욱 (조선대학교 생명화학공학과) ;
  • 최재곤 (조선대학교 공과대학 응용화학소재공학과)
  • Published : 2007.09.29

Abstract

Polyamic acid(PAA)/organoclay nanocomposites containing phosphorous were prepared by solution blending of phosphorylated PAA(PPAA) and organically modified montmorillonite(O-MMT) as a type of layered clays. The nanocomposites were characterized by FT-IR, DSC, TGA, PCFC, SEM, and XRD. The preparation of nanocomposites was confirmed by FT-IR and XRD. SEM pictures showed that the organoclay was dispersed well in the PAA matrix relatively. XRD results indicated that the O-MMT layers were intercalated. The thermal stability and flame retardancy of O-MMT/PPAA nanocomposites were higher than those of pure PAA. PCFC results also showed that the heat release capacity and total heat release values of O-MMT 4 wt%/PPAA-0.2, 0.4, 0.6 composites were decreased with increasing the mole ratio of phosphorous. It was found that the nanocomposite films had the potential to be used as a fire safe material.

유기화된 montmorillonite(O-MMT)와 인을 포함하는 polyamic acid(PPAA)를 용액 블렌딩하여 PAA/organoclay 나노 복합체를 제조하였다. 이들 나노 복합체들의 연구를 위하여 FT-IR, DSC, TGA, PCFC, SEM 그리고 XRD를 이용하였다. 나노복합체들의 제조확인은 FT-IR과 XRD 분석을 통하여 확인하였다. SEM 사진들은 O-MMT가 매트릭스 고분자에 비교적 고르게 분산되어 있음을 보여 주었고, XRD 결과를 통하여 O-MMT가 intercalation 되었음을 확인하였다. O-MMT/PPAA 나노복합체들의 열안정성 및 난연성은 순수한 PAA 보다 크게 높았으며, O-MMT/PPAA-0.2, 0.4, 0.6 복합체들의 열방출 용량과 총열방출 값들은 인의 함량 증가와 함께 감소하였다. 본 연구에서 제조된 나노복합체 필름들이 화재안전재료로서 사용될 수 있는 잠재성을 가지고 있음을 확인하였다.

Keywords

References

  1. F. A. King and J. J. King, 'Engineering thermoplastics', Marcel Dekker Inc., N. Y., 31(1985)
  2. K. L. Mittal, Ed, 'Polyimides', Plenum Press, N. Y., 1984
  3. A. K. St. Clair, T. L. St. Clair, W. S. Slemp, and K. S. Ezzell, NASA TM-87650 report (1985)
  4. J. L. Hedric, J. W. Labadie, T. D. Palmer, and T. P. Russell, 'Polyimides :Material chemistry and characterization', Ed by C. Feger, Elsevier Sci, publisher B. V., 61, Amsterdam, 1989
  5. R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis, 'Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates', Chem., Mater., 6, 1017 (1994) https://doi.org/10.1021/cm00043a025
  6. C. U. Lee, K. S. Pae, H. K. Choi, J. H. Lee, and G. S. Sur, 'A Study on the Preparation of Polyimide/Clay Nanocomposites', Polymer(Korea), 24, 2, 228 (2000)
  7. T. C. Chang, K. H. Wu, Y. S. Chiu, 'Characterization and degradation of some phosphorouscontaining polyimides', Polymer Degradation and Stability, 63, 103 (1999) https://doi.org/10.1016/S0141-3910(98)00070-6
  8. T. Ranganathan, Joseph Zilberman, R. J. Farris, E. B. Coughlin, and T. Emrick, 'Synthesis and Characterization of Halogen-Free Antiflammable Polyphosphonates Containing 4,4'-Bis- hydroxydeoxybenzoin', Macromolecules, 39, 5974 (2006) https://doi.org/10.1021/ma0614693
  9. H. L. Tyan, Y. C. Liu, K. H. Wei, 'Enhancement of imidization of poly(amic acid) through forming poly(amic acid)/organoclay nanocomposites', Polymer, 40, 4877 (1999) https://doi.org/10.1016/S0032-3861(98)00716-2
  10. Y. U. An, J. H. Chang, Y. H. Park, and J. M. Park, 'Polyurethane Nanocomposites with Organoclay', Polymer(Korea), 26(3), 381 (2002)
  11. R. N. Walters, and R. E. Lyon, 'Molar group contributions to polymer flammability', J. Appl. Polym. Sci., 87, 548 (2003) https://doi.org/10.1002/app.11466
  12. R. N. Walters, and R. E. Lyon, 'Pyrolysis combustion flow calorimetry', J. Anal. Appl. Pyrolysis., 71, 27 (2004) https://doi.org/10.1016/S0165-2370(03)00096-2
  13. J. H. Shim, E. S. Kim, J. H. Joo, and J. S. Yoon, 'Properties and Morphology of Poly(L-lactide) /Clay Composites According to the Clay Modification', J. of Applied Polym. Sci., 102, 4983 (2007)
  14. H. R. Fisher, L. H. Gielgens, and T. P. M. Koster, 'Nanocomposites from polymers and layered minerals', Acta Polymerica, 50, 122 (1999) https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  15. K. A. Carrado and L. Xu. 'In Situ Synthesis of Polymer-Clay Nanocomposites from Silicate Gels', Chem. Mater., 10, 1440 (1998) https://doi.org/10.1021/cm970814n
  16. Z. S. Petrovic, I. Javni, A. Waddon, and G. Banhegyi, 'Structure and properties of polyurethane-silica nanocomposites', J. Appl. Polym. Sci., 76, 133 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K
  17. Z. K. Zhu, Y. Yang, J. Yin, X. Wang, Y. C. Ke, and Z. N. Qi, 'Preparation and properties of organosoluble montmorillonite/polyimide hybrid materials', J. Appl. Polym. Sci., 73, 2063 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990912)73:11<2063::AID-APP1>3.0.CO;2-Q
  18. C. F. Cullis and M. M. Hirshier, 'The Combution of Organic Polymers:, Clarendon Press', p. 241, Oxford, 1981 and References
  19. W. C. Kuryla, A. J. Papa, 'Flame Retardancy of Polymer Materials', vol. 1-4, Marcel Dekker, N.Y., 1973
  20. O. C Jeon, J. K. Choi, and B. W. Jo, 'Blends of Poly(ethylene 2,6-naphthalate) and a Liquid Crystalline Polyester Having Ethoxy Group in the Side Chain', J. Korean Ind. Eng. Chem., 13, 3, 229 (2002)
  21. Malcolm P. Stevens, Polymer Chemistry, 3rd ed., p. 106, Oxford University press, New York Oxford, 1999
  22. S. C. Moon, 'Improvement of Flame Retardancy of Polyolefin/rubber foams', Doctoral Dissertation, Chosun University (2004)
  23. H. Zhang, R. J. Farris, and P. R. Westmoreland, 'Low Flammability and Thermal Decomposition Behavior of Poly(3,3'-dihydroxybiphenylisophthalamide) and Its Derivatives', Macromolecules, 36, 3944 (2003) https://doi.org/10.1021/ma021764x