• Title/Summary/Keyword: 열적 내구성

Search Result 89, Processing Time 0.029 seconds

Thermal Properties of Insulation Coating Resin by Nanohybrid Method (나노하이브리드 절연코팅 수지의 내열특성)

  • Han, Se-Won;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.275-275
    • /
    • 2010
  • 나노하이브리드 방법으로 제조된 변성 폴리이드계 나노하이브리드 절연코팅의 표면 내열특성을 비교 분석하였다. 최근 절연코팅의 사용환경이 열적내구성을 높게 요구하는 경향이 크다. 따라서 이러한 환경에 맞는 절연성과 열적내구성을 구현하기 위해서는 열적내구성이 우수한 세라믹 일자를 수지에 분산시켜 그 성능을 개선할 필요가 있다. 본 논문에서는 나노 하이브리드 방법으로 제조된 변성 폴리이드계 나노하이브리드 절연코팅의 표면 내열특성을 비교 분석하였다.

  • PDF

A Estimation of Thermal Fatigue Performance in Three-way Catalyst (삼원 촉매의 열적 내구 성능 평가)

  • Lee, Sung Riong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • This study examines thermal safety on three-way catalyst that dominates 70% among whole exhaust gas purification device in 2003. Three-way catalyst maintains high temperature in interior domain but maintains low temperature on outside surface. Therefore this device shows tensile stress on outside surface. Temperature distribution of three-way catalyst was acquired by thermal flow analysis for predicted thermal flow parameter. Thermal stress analysis for three-way catalysis was performed based on this temperature distribution. Thermal safety of three-way catalyst was estimated by strength reduction factor and failure probability.

Alumimium Titanate-Mullite Composites : Part1,Thermal Durability (Alumimium Titanate-Mullite 복합체: Part1, 열적 내구성)

  • Kim, Ik-Jin;Gang, Won-Ho;Go, Yeong-Sin
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.624-631
    • /
    • 1993
  • The composites in the system aluminium titanate-mullite were synthesized by stepwise alkoxide hydrolysis of tetraethylorthosilicate, Si(OCLH5), and titaniumtetraethoxide, $Ti(OC_{2}H_{5})_4$ in $Al_{2}O_{3}$ ethanolic colloidal solution. All particles produced by sol-gel-process were amorphous, monodispesed and had a narrow particle size distribution. Sintered bodies at $1600 ^{\circ}C$ for 2h were subjected to prolonged durability tests-on the one hand annealing at the critical decomposition temperature of $1100 ^{\circ}C$ for lOOh and on the other cyclic thermal shock between 750 and $1400 ^{\circ}C$ for 100h. The best thermal durability was achieved by a composition containing 70 and 80 vol% aluminium titanate, which showed little change in microstructure and thermal expansion cycles during the tests. The microstructural degradation of samples studied using scanning electron microscopy, X-ray diffraction, and dilatometry, was presented here. The study was conducted in order to predict the service life of aluminium titanate-mullite ceramics formed by this processing route.

  • PDF

Selection of Artificial Sand Suitable for Manufacturing Steel Castings through Evaluation of Various Foundry Sand Properties (각종 주물사의 특성과 주강품 주조에 적합한 인공사 선택)

  • Gwang-Sik Kim;Jae-Hyung Kim;Myeong-Jun Kim;Ji-Tae Kim;Ki-Myoung Kwon;Sung-Gyu Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.3
    • /
    • pp.107-136
    • /
    • 2023
  • Natural silica sand was commonly used for sand casting of cast steel products, and chromites sand was used to suppress seizure defects due to the lack of thermal properties of silica sand. However there are disadvantages such as deterioration by repeated use, system sand mixing problem, difficulty separating and removing, increased during mold according to high density and to being waste containing chrome. Recently, industrial waste reduction and atmospheric environment improvement have been highlighted as important tasks in the casting industry. In order to solve the problems that occur when using foundry Sand and to improve the environment of casting factories, various artificial sands that can be applied instead of natural silica sand have been developed and introduced. Artificial sands can be classified into artificial sand manufactured by the electric arc atomization or gas flame atomization, artificial sand manufactured by the spray drying & sintering process, artificial sand manufactured by the sintering & crushing process and exhibit different physical properties depending on the type of raw-minerals and manufacturing method. In this study, comparative evaluation tests were conducted on the physical properties of various foundry sands, mold strength, physical durability, thermal durability, and casting test pieces. When comprehensively considering the actual amount of molding sand used according to density, the mold strength according to the shape of sand, the physical and thermal durability of foundry sand, and the heat resistance characteristics of foundry sand, 'Molten artificial sand A1' or 'Molten artificial sand B' is judged to be the most suitable spherical artificial sand for casting of heavy steel castings.

Characterization and 3D Analysis of PETG/POE Thermoplastic Composites (PETG/POE 열가소성 복합재료의 특성평가 및 전산해석)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Sim, Ji-Hyun
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.360-367
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability, mechanical properties and 3D analysis of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out enhanced various weight percent POE(polyolefin elastomer). The thermal and mechanical properties of the thermoplastic composites, and the charpy impact strength, The analysis was performed to evaluate the characteristics according to weight percent of POE. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

An Estimation of Thermal fatigue in Three-way catalyst (삼원촉매장치의 열 피로 평가)

  • Cho, Seok-Swoo;Lee, Hyun-Chang;Park, Woo-Chul;Choi, Hyun-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.163-166
    • /
    • 2009
  • 현재 자동차 검사 또는 정비 현장에서는 특정 삼원촉매변환기가 요구 내구 수명을 제대로 만족시키지 못하여 파손되는 사례가 발생되고 있다. 이러한 삼원촉매장치의 경우 배기가스 변환 효율이나 압력강하 등은 엔진 효율 측면에서 만족되지만 열적 내구성은 만족되지 못한다. 본 연구에서는 열유동 해석 및 구조 해석을 통하여 국내 승용차용 삼원촉매 변환기의 대한 열적 안전성에 대하여 검토하였다.

  • PDF

Evaluation of Fatigue-Strength-Reduction Factor for SiC Ceramic Substrate (SiC 세라믹 담체에 대한 피로강도저하계수의 평가)

  • Baek, Seok-Heum;Cho, Seok-Swoo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.989-992
    • /
    • 2011
  • 삼원 촉매는 주로 코제라이트 세라믹으로 제작되는 다공성 부품이다. 그러나 코제라이트 세라믹은 열적충격온도가 낮아 엔진의 혼합기가 농후한 경우 삼원촉매의 열적 내구성이 급격히 떨어져 내구 수명을 제대로 만족시키지 못하는 차량이 급격히 증가하고 있다. 따라서 본 논문은 유한요소법으로 구한 SiC 세라믹 재료의 등가 물성치를 기초로 SiC 세라믹 촉매 담체의 기계적 물성치를 유한요소해석용시험편으로 구한 뒤 SiC 세라믹 촉매담체가 실차에 설치될 경우의 열피로 성능에 대하여 평가하였다.

  • PDF

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.103-115
    • /
    • 2013
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine have been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.603-615
    • /
    • 2012
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine has been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

  • PDF