• Title/Summary/Keyword: 열수변질

Search Result 147, Processing Time 0.032 seconds

Chemical Characterization of Oscillatory Zoned Tourmaline from Diaspore Nodule, an Aluminum-rich Clay Deposit, Milyang, South Korea (밀양 고알루미나 점토광상 다이아스포아 단괴내의 진동누대 전기석의 화학적 특징)

  • Choo, Chang-Oh;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.227-236
    • /
    • 2005
  • Hydrothermal tourmaline occurs as aggregates or dissemination in the diaspore nodule from an aluminum-rich clay deposit, Milyang, southeastern Korea. Most crystals of tourmaline show complex textures that are finely zoned. The fine-scale chemical zonation of hydrothermal tourmaline reflects the fluctuation conditions that would be expected from fluid mixing in open systems. Oscillatory chemical zoning in tourmaline formed and showed similar patterns, regardless of its crystallographic directions. Mg was enriched in the early stage of crystal growth while Fe was enriched in the later stage, with fluctuations of the ratio of Fe to Mg. Chemical analysis, BSE images, and X-ray compositional maps confirm that the oscillatory Boning in tourmaline is exclusively controlled by the variations of Fe and Mg contents, but the contribution of boron to the zonation is insignificant. The fact that tourmaline altered to diaspore and dickite indicates that tourmaline was unstable with respect to these aluminous minerals as the B, Fe, and Mg activities decreased. Therefore, the aluminum activity may control the stability of tourmaline in the hydrothermal system.

Hydrothermal Alteration of Miryang Pyrophyllite Deposit (밀양납석광상의 열수변질 특징)

  • Moon, Dong Hyeok;Kwak, Kyeong Yoon;Lee, Bu Yeong;Koo, Hyo Jin;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.265-277
    • /
    • 2015
  • Hydrothermal alteration patterns and environment are studied by mineral assemblages and chemical analyses of surface and core samples from Miryang pyrophyllite deposit. The alteration zones of this deposit can be divided into three zones on the basis of mineral assemblage; advanced argillic, phyllic, and propylitic zone. Advanced argillic zone mainly consists of pyrophyllite-dickite (-quartz) and corresponds to principal mining ore. The common mineral assemblage of phyllic zone and propylitic zone are sericite-quartz-dickite and chlorite-quartz, respectively. Horizontal and vertical alteration patterns and major element geochemistry indicate that pyrophyllite ores have been formed several times by hydrothermal alteration. And it also suggests that the huge ore bodies may be extended from the deeper part of recent quarries to the south-southeastern direction. The paragenesis of ore minerals and polytype (2M) suggest that ore deposit was formed at about $300-350^{\circ}C$.

Mineralogical Characteristics and Formation Processes of Zonal Textures in Hydrothermal Epidote from the Bobae Sericite Deposit (보배 견문모 광상에서 산출하는 녹염석의 누대구조의 특징과 발달과정)

  • 추창오
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.437-446
    • /
    • 2001
  • Zoned epidotes formed by the propylitic alteration of the Bobae sericite deposit in western Pusan show complex compositional zoning patterns, such as multiple growth zoning, oscillatory zoning, patchy zoning and irregular zoning. The complex zoned epidote, in general, shows AI-rich cores and Fe-rich rims. Pistacite component (Ps) in the epidote ranges from 18.5 to 74.3 mot.%. Remnant textures in multiple growth zoning indicate that the earlier zone was partially resorbed prior to growth of later one. Multiple growth zoning and oscillatory zoning suggest that hydrothermal system underwent rapid changes and fluctuations in fluid chemistry, redox condition, or temperature.

  • PDF

Volcanic Origin Potential Acid Sulfate Soil Material : Hydrothermally Altered Pyrite Rich Andesite (열수변질 함황철석 안산암 기원의 잠재성 특이산성토 물질)

  • Kim, Jae Gon;Chon, Chul-Min;Yun, Eul-Soo;Zhang, Yong-Seon;Jung, Pil-Kyun;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.311-317
    • /
    • 2000
  • Acid sulfate soil and potential acid sulfate soil material are worldwide in distribution and are problematic in agriculture and environment due to their present and potential acidity developed by the oxidation of sulfides. Most of them are sedimentary origin and a few cases are reported as volcanic or metamorphic origin. We report a potential acid sulfate soil material originated from volcanic activity during Mesozoic. A profile of Bongsan series-weathered nonpyritic andesite-hydrothermally altered pyrite rich andesite was studied with field examination, chemistry, and mineralogy. Once, the pyrite rich andesite was exposed to atmosphere by excavation and leveling works for a residential area and the lay out site had subsequent acidification problem of soil and surface water. The parent material and soil profile of Bongsan series had no signs of presence of pyrite and acid sulfate weathering such as yellow mottles. However, the hydrothermally altered andesite substrata contained significant amount of pyrite showing characteristics of hydrothermal origin such as cubic and pyritohedron morphology and occurrence along cracks.

  • PDF

Preliminary Study on the Formation Environment of Serpentinite occurring in Ulsan Area (울산지역 사문암의 형성환경 해석을 위한 예비연구)

  • Koh, Sang-Mo;Park, Choong-Ku;Soh, Won-Ju
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.325-336
    • /
    • 2006
  • Domestic serpentinite is one of the important industrial minerals utilizing in the iron manufacturing company such as POSCO in Korea. Serpentinite is distributed in the Ulsan Fe deposit, Andong, Hongseong-Cheongyang, and Gapyeong areas. This study tries to interpret the relationship among the formation of carbonate rocks, iron mineralization, and serpentinite alteration throughout the study of field occurrence, mineralogy, and chemical compositions. Serpentine is formed by the break-down of olivine and pyroxene of parent peridotite. The serpentinization is inferred to be formed by the hydrothermal fluid derived from intruded Cretaceous granite and the addition of meteoric water. Variation of major oxides such as $SiO_2,\;Fe_2O_3$, and MgO in serpentinized rocks are controlled by the degree of serpentinization and Fe mineralization. Variation of $Al_2O_3$ and CaO contents of altered rocks is dependent on the amount of the residual minerals such as calcite and homblende, and on the degree of chloritization. The presence of carbonate rocks reported in the sedimentary origin or igneous origin (carbonatite) provided a geological environment to form skarn type Fe deposit regardless of its origin. The geological processes of Ulsan Fe deposits are inferred to be formed as the order of the formation of carbonate rocks ${\to}$ the intrusion of Cretaceous granite ${\to}$ serpentinization ${\to}$ Fe mineralization by the interprelation of field occurrence and mineralogical characteristics.

The Cenetic Implication of Hydrothermal Alteration of Epithermal Deposits from the Mugeuk Area (무극 지역 천열수 광상 열수변질대의 성인적 의미)

  • 박상준;최선규;이동은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.265-280
    • /
    • 2003
  • The Mugeuk mineralized area that associated with the pull-apart type Cretaceous Eumseong basin is composed of several gold-silver vein deposits that are emplaced in late Cretaceous biotite granite. The gold-silver deposits in the area show various hydrothermal alteration zones as well as Au/Ag ratios and ore mineralogy. The Geumbong mine showing relatively high gold fineness is composed of multiple veins and show alteration pattern; vein \longrightarrow phyllic \longrightarrow subphyllic \longrightarrow propylitic \longrightarrow subpropylitic zone. In contrast, The Taegeuk mines show the low fineness values, in far southern part are characterized by increasing tendency of simple and/or stockwork veins. The deposit displays alteration pattern; vein \longrightarrow propylitic \longrightarrow subpropylitic zone. Variations of alteration zone with depth show that phyllic zone are dominant in deeper level and propylitic zone sporadically overlapped by argillic zone are dominant in shallow level. The differences of alteration pattern between the gold-silver deposits are reflect the evolution of the hydrothermal fluids; the ore-forming fluids of the Geumbong mine are at relatively high temperature and salinity and highly-evolved meteoric water, developing phyllic zone, the Taegeuk mine containing greater amounts of less-evolved meteoric waters shows relatively low temperature and salinity in ore-forming fluids, developing propylitic zone. The various physicochemical environment for gold-silver mineralization in the Mugeuk mineralized area is due to proximity from heat source area (Mugeuk mine) to marginal area (Taegeuk mine) in a geothermal field. Therefore, it is suggested that the criteria for project exploration in the area are to focus on the area proximal to heat source and phyllic zone.

A Quantitative Study for Hydrothermal Alteration Zones using Short Wavelength Infrared Spectrometry (단파장적외선 분광분석법을 이용한 열수변질대 정량화 연구)

  • Kim, Yong-Hwi;Choi, Seon-Gyu;Ko, Kwang-Beom;Han, Kyeong-Soo;Koo, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Advanced argillic, argillic, and phyllic zones are the most important alteration patterns to predict the hidden ore body during exploration of hydrothermal deposits. We examined the quantitative relationship between the spectral absorption characteristics and the mineral content of the synthetic mixtures such as alunite-kaolinite and illite-kaolinite using short wavelength infrared (SWIR) spectroscopy. In the alunite-kaolinite mixtures, the spectral absorption characteristics of the alunite was highly correlated with the Hull quotient reflectance(0.99) and the kaolinite had the highest correlation with the Gaussian peak(0.92). Illite-kaolinite mixtures are essential for Gaussian deconvolution because of the overlap of absorption region. Illite and kaolinite mixtures indicate the high correlation of 0.93 and 0.98, respectively. The error ranges in the alunite-kaolinite(8%) and illite-kaolinite mixtures(5%) derived from SWIR were smaller than the ones(29% and 26%) obtained from X-ray diffraction(Rietveld) analysis. These results show that SWIR spectroscopic analysis is more reliable than XRD Rietveld analysis in terms of quantification of allowed minerals.