DOI QR코드

DOI QR Code

A Quantitative Study for Hydrothermal Alteration Zones using Short Wavelength Infrared Spectrometry

단파장적외선 분광분석법을 이용한 열수변질대 정량화 연구

  • Received : 2017.01.10
  • Accepted : 2017.02.20
  • Published : 2017.02.28

Abstract

Advanced argillic, argillic, and phyllic zones are the most important alteration patterns to predict the hidden ore body during exploration of hydrothermal deposits. We examined the quantitative relationship between the spectral absorption characteristics and the mineral content of the synthetic mixtures such as alunite-kaolinite and illite-kaolinite using short wavelength infrared (SWIR) spectroscopy. In the alunite-kaolinite mixtures, the spectral absorption characteristics of the alunite was highly correlated with the Hull quotient reflectance(0.99) and the kaolinite had the highest correlation with the Gaussian peak(0.92). Illite-kaolinite mixtures are essential for Gaussian deconvolution because of the overlap of absorption region. Illite and kaolinite mixtures indicate the high correlation of 0.93 and 0.98, respectively. The error ranges in the alunite-kaolinite(8%) and illite-kaolinite mixtures(5%) derived from SWIR were smaller than the ones(29% and 26%) obtained from X-ray diffraction(Rietveld) analysis. These results show that SWIR spectroscopic analysis is more reliable than XRD Rietveld analysis in terms of quantification of allowed minerals.

열수 광상의 잠두 광체를 예측하는데 중요한 인자로 인식되는 고(산성)점토 변질대, 점토 변질대 및 필릭 변질대의 정량성을 확보하기 위해 명반석-고령석 조합과 일라이트-고령석 조합에 대한 합성 혼합시료를 대상으로 단파장적외선 스펙트럼의 흡광특성과 광물함량의 점이적인 변화추이를 비교하였다. 명반석-고령석 조합에서 명반석은 Hull quotient 반사도가 가장 높은 상관관계(0.99)를 보이며, 고령석은 가우시안 피크가 가장 높은 상관관계(0.92)를 나타내고 있다. 일라이트-고령석 조합은 흡수영역이 중첩하고 있어 가우시안 분해가 필수적이며, 일라이트와 고령석은 각각 0.93과 0.98의 높은 상관도를 보이고 있다. 단파장적외선 분광분석법에서 유도한 명반석-고령석과 일라이트-고령석 조합의 오차범위(8%, 5%)는 리트벨트 X-선 회절정량분석법에서 구한 성분비의 오차범위(29%, 26%)보다 작아 분광분석결과가 상대적으로 정량적 신뢰도가 높다는 것으로 확인되었다.

Keywords

References

  1. AusSpec International Ltd. (2008) Geologically-based spectral analysis guides for mineral exploration( GMEX). AusSpec International Ltd., Sydney, 289p.
  2. Corbett, G.J. and Leach, T.M. (1998) Southwest Pacific Rim gold-copper systems: structure, alteration, and mineralization. Society of Econoimc Geologist, Special Pub. no.6, 237p.
  3. Dilles, J.H. (2012) Footprints of porphyry Cu deposits: Vectors to the hydrothermal center using mineral mapping and lithogeochemistry. Final Technical Report. USGS, 580p.
  4. Halley, S., Dilles, J.H. and Tosdal, R.M. (2015) Footfrints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Newsletter, v.100, p.11-17.
  5. Harraden, C.L., McNulty, B.A., Gregory, M.J. and Lang, J.R. (2013) Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble Porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Economic Geology, v.108, p.483-494. https://doi.org/10.2113/econgeo.108.3.483
  6. Harvey, C.C. and Browne, P.R.L. (1991) Mixed layered clay geothermometry in the Wairakei geothermal field, New Zealand. Clay and Clay Minerals, v.39, p.614-621. https://doi.org/10.1346/CCMN.1991.0390607
  7. Hauff, P.L. (2008) An overview of VIS-NIR-SWIR field spectroscopy as applied to precious metals exploration. Spectral International Inc, 71p.
  8. Hemley, J.J., Montoya, J.W., Marinenko, J.W. and Luce, R.W. (1980) Equilibrai in the systems $Al_2O_3-SiO_2-H_2O$ and some general implications for alteration/mineralization processes. Economic Geology, v.75, p.210-228. https://doi.org/10.2113/gsecongeo.75.2.210
  9. Herrmann, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N. and Pontual., S. (2001) Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, v.96, p.939-955.
  10. Kerr, A., Rafus, H., Sparkes, G., Hinchey, J. and Sandeman, H. (2011) Visible/Infrared Spectroscopy (VIRS) as a research tool in economic geology: Background and pilot studies from Newfoundland and Labrador. Geological Survey, v.11, p.145-166.
  11. Keshava, N. (2003) A survey of spectral unmixing algorithms. Lincoln Laboratory Journal, v.14, p.55-78.
  12. Kim, C.S., Choi, S.G., Kim, Y.D. and Chi, S.J. (2002) Application of short-wave infrared spectral analysis to define hydrothermal alteration zones in exploration. The Korean society of mineral and energy resources engineers, v.39, p.231-241.
  13. Klein, C. and Dutrow, B. (2008) Manual of mineral science. 23rd, John Wiley, New York, 635p.
  14. Kuosmanen, V., Laitinen, J., Eilu, P. and Ojala, J. (2005) Study of alteration indications using VSWIR reflectance of drillcores from the Harmankyla gold prospect, Kuhmo, NE Finland. Geologicla Suvey of Finland, 26p.
  15. Mcmillan, W.J. and Panteleyev, A. (1980) Ore deposit models; 1, porphyry copper deposits. Geoscience Canada, v.7, p.52-63.
  16. Pak, S.J., Choi, S.G. and Lee, D.E. (2003) The genetic implication of hydrothermal alteration of epithermal deposits from the Mugeuk Area. Journal of Mineral Society of Korea, v.16, p.265-280.
  17. Panteleyev, A. (1996) Epithermal Au-Ag-Cu high sulphidation. British Columbia Mineral Deposit Profiles, v.2, p.37-39.
  18. Reyes, A.G. (1990) Petrology of Philippines geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research, v.43, p.279-309. https://doi.org/10.1016/0377-0273(90)90057-M
  19. Scott, K.M and Yang, K. (1997) Spectral reflectance studies of white micas. Australian Mineral Industries Research Association Ltd., 18p.
  20. Stoffregen, R. (1987) Genesis of acid-sulfate alteration and Au-Cu-Ag mineralisation at Summitville, Colorado. Economic Geology, v.82, p.1575-1591. https://doi.org/10.2113/gsecongeo.82.6.1575
  21. Swayze, G.A., Clark, R.N., Goets, A.F.H., Livo, K.E., Breit, G.N., Kruse, F.A., Stutley, S.J., Snee, L.W., Lowers, H.A., Post, J.L., Stoffregen, R.E. and Ashley, R.P. (2014) Mapping advanced argillic alteration at Cuprite, Nevada using imaging spectroscopy. Economic Geology, v.109, p.1179-1221. https://doi.org/10.2113/econgeo.109.5.1179
  22. Thompson, A.J.B., Hauff, P.L. and Robitaille, A.J. (1999) Alteration mapping in exploration: Application of short-wave infrared (SWIR) spectroscopy. SEG Newsletter, v.39, p.16-25.
  23. Winkler, J. (2013) Titanium Dioxide: Production, Properties and Effective Usage. Vincentz Network, Hanover, 152p.
  24. Yang, K. and Huntington, J.F. (1997) Spectral analysis of drill-hole samples from Wafi porphyry Cu-Au deposit, PNG. CSIRO Exploration and Mining Report, No. 139R, 30p.