DOI QR코드

DOI QR Code

Mineral Identification and Field Application by Short Wave Infrared (SWIR) Spectroscopy

단파장적외선 분광분석법을 이용한 광물동정과 현장적용성

  • Kim, Chang Seong (Department of Earth and Environmental Sceinces, Korea University) ;
  • Kim, Yong-Hwi (Department of Earth and Environmental Sceinces, Korea University) ;
  • Choi, Seon-Gyu (Department of Earth and Environmental Sceinces, Korea University) ;
  • Ko, Kwang-Beom (Mining and Geotechnical Team, Korea Resources Corporation (KORES)) ;
  • Han, Kyeong-Soo (Mineral Processing Team, Korea Resources Corporation (KORES))
  • 김창성 (고려대학교 지구환경과학과) ;
  • 김용휘 (고려대학교 지구환경과학과) ;
  • 최선규 (고려대학교 지구환경과학과) ;
  • 고광범 (한국광물자원공사 자원개발기술팀) ;
  • 한경수 (한국광물자원공사 자원처리기술팀)
  • Received : 2016.12.30
  • Accepted : 2017.02.20
  • Published : 2017.02.28

Abstract

The analytical conditions including surface state, moisture effect, and device condition were investigated for applying Short Wave Infrared(SWIR) spectroscopy to the field survey. Among the three surface state of samples (exposed surface, cutting face and powder), both spectra from the exposed surface and cutting face are almost identical whereas spectral variation was detected in powder sample. Over 24-hours-dryring of the wet sample at room temperature, the samples show a similar spectrum with that of dry condition. The result suggests that outcrop samples mighty be dried for 24 ~ 48 hours depending on the wetness of outcrop. The bright minerals could produce stable spectra with 10 times measurements as default value of the device under SWIR spectroscopy but the dark minerals would require about 10 seconds, which corresponds to 100 times measurements to get the reliable spectra. The position and shape 2,160 ~ 2,330 nm and/or other spectral features of hydrothermal alteration minerals by SWIR spectroscopy could be used for a classification of hydrothermal alteration zone in the field. Absorption peaks in 2,160 ~ 2180 nm are useful for identifying (advanced) argillic zone by spectral characteristics of kaoline, dickite, pyrophyllite, and alunite. Absorption peaks in 2,180 ~ 2,230 nm are able to define muscovite, sericite, and smectite, which are key alteration minerals in phyllic zone. Absorption peaks in 2,230 ~ 2,270 nm can be used to recognize prophylitic zone where chlorite and epidote occur. Absorption peaks of other principle minerals such as talc, serpentine, amphibole, and carbonate group are mainly detected within the wave length of 2,270 ~ 2,330 nm. This result indicates that the spectra of these minerals need to be carefully interpreted.

단파장적외선 분광분석법을 현장에 적용하여 일정한 스펙트럼을 획득할 수 있는 시료의 표면상태, 수분함유 정도 및 분석조건에 대하여 검토하였다. 자연면, 절단면, 분말의 표면상태 중 자연면과 절단면은 거의 유사한 스펙트럼이 획득되었으며, 분말상태의 시료에서는 스펙트럼의 변화가 인지된다. 수분이 함유된 시료는 24시간 이상 상온 건조 후 측정 시 일정한 스펙트럼을 얻을 수 있으므로, 현장에서의 여건에 따라 24 ~ 48시간의 건조시간이 필요할 것이다. 밝은 색 광물의 경우 기기의 기본 값인 10회 반복측정으로도 안정적인 스펙트럼의 획득이 가능하였으나, 어두운 색의 광물은 100회에 해당하는 10초 정도의 분석시간이 필요할 것으로 판단된다. 열수변질대 탐사 시, 2,160 ~ 2,330 nm 영역에서의 흡수피크 위치 및 형태를 기준으로, 그 외의 스펙트럼 특징들을 이용하면 대략적인 열수변질대 분대가 현장에서도 가능할 것으로 판단된다. 2,160 ~ 2,180 nm는 고령석, 딕카이트, 엽납석 및 명반석에 의해 (고)점토대((advanced) argillic zone)로, 2,180 ~ 2,230 nm의 흡수피크는 백운모, 견운모 및 스멕타이트에 의해 견운모대(phyllic zone), 2,230 ~ 2,270 nm 영역의 흡수피크는 녹니석 및 녹염석에 의해 프로필리틱대(prophylitic zone)로 구분 가능하다. 2,270 ~ 2,330 nm 영역에서는 명반석, 활석, 사문석, 각섬석, 탄산염광물 등 다양한 광물의 흡수피크가 나타나므로, 보다 더 세밀한 스펙트럼 해석이 요구된다.

Keywords

References

  1. AusSpec International Ltd. (2008) Geologically-based spectral analysis guides for mineral exploration (volume 1). AusSpec International Ltd., Sydney, 189p.
  2. Bishop, J.L. and Murad, E. (2005) The visible and infrared spectral properties of jarosite and alunite. American Mineralogist, v.90, p.1100-1107. https://doi.org/10.2138/am.2005.1700
  3. Bishop, J.L., Lane, M.D., Dyar, M.D., King, S.J., Brown, A.J. and Swayze, G.A. (2014) Spectral properties of Ca-sulfates: Gypsum, bassanite, and anhydrite. American Mineralogist, v.99, p.2015-2115.
  4. Cho, H.I. and Moon, H-.S. (1978) Alunite deposits in Korea. Korea Research Institute of Geoscience and Mineral Resources, Seoul, 105p.
  5. Cudahy, T.J. (1997) PIMA-II spectral characteristics of natural kaolins. Australian Mineral Industries Research Association Ltd., CSIRO/AMIRA Project P435, 62p.
  6. Deyell, C,L. and Dipple, G.M. (2005) Alunite natroalunite solid-solutions-equilibrium mineral fluid calculations and their application to the El Indio-Pascua Belt (Chile-Argentina). Chemical Geology, v.215, p.219-234. https://doi.org/10.1016/j.chemgeo.2004.06.039
  7. Dilles, J.H. (2012) Footprints of porphyry Cu deposits: Vectors to the hydrothermal center using mineral mapping and lithogeochemistry. USGS, 580p.
  8. Halley, S., Dilles, J.H. and Tosdal, R.M. (2015) Footfrints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Newsletter, v.100, p.1 and 12-17.
  9. Harraden, C.L., Mcnulty, B.A., Gregory, M.J. and Lang, J.R. (2013) Shortwave infrared spectral analysis of hydrothermal alteration associated with the pebble porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Economic Geology, v.108, p.483-494. https://doi.org/10.2113/econgeo.108.3.483
  10. Hauff, P.L. (2008) An overview of VIS-NIR-SWIR field spectroscopy as applied to precious metals exploration. Spectral International Inc, 71p.
  11. Hedenquist, J.W., Arribas, A. and Gonzales-Urien, E. (2000) Exploration for epithermal gold deposits. In Hagemann, S.G. and Brown, P.E.(eds.) Gold in 2000. Reviews in economic geology, v. 13, p. 245-277.
  12. Herrmann, W., Blake, M., Doyle, M., Huston, D., Kam prad, J., Merry, N. and Pontual., S. (2001) Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, v.96, p.939-955.
  13. Jeong, Y.S., Yu, J., Koh, S.M. and Heo, C.H. (2014) Spectroscopy of skarn minerals in Dangdu Pb-Zn deposit and assessment of skarn exploration approaches employing portable spectrometer. J. Miner. Soc. Korea, v.27, p.135-147. https://doi.org/10.9727/jmsk.2014.27.3.135
  14. Jeong, Y.S., Yu, J., Koh, S.M., Heo, C.H. and Lee, J. (2016) Spectral characteristics of minerals associated with skarn deposits: a case study of Weondong skarn deposit, South Korea. Geosciences Journal, v.20, p.167-182. https://doi.org/10.1007/s12303-015-0043-0
  15. Keshava, N. (2003) A survey of spectral unmixing algorithms. Lincoln Laboratory Journal, v.14, p.55-78.
  16. Kim, C.S., Pak, S-.J., Choi, S-.G., Kim, Y-.D. and Chi, S-.J. (2002) Application of short-wave infrared spectral analysis to define hydrothermal alteration zones in exploration. The Korean Society of Mineral and Energy Resources Engineers, v.39, p.231-241.
  17. Kim, Y-.H., Choi, S-.G., Kim, C.S., Ko, G.B. and Kang I.M. (2015) The application of phyllosilicate mineral standardization by using VNIR-SWIR portable spectrometer. Joint Conference of the Geological Science & Technology of Korea, KSEEG, Gwangju, April 22-24, p.22-23.
  18. Kim, Y.H., Kim, G.B., Choi, S.-G., Kim, C.S. and Kim, H. (2016) Short-wave infrared spectroscopic analysis application for the identification of high-grade limestones from the Upper Pungchon Formation. Joint Conference of the Geological Science & Technology of Korea, The geological society of Korea, Pyeongchang, October 26-29, pp.138.
  19. Ko, G.B., Kang, H-.J., Kim, C.S. and Choi, S-.G. (2015) Spectroscopic analysis technique of the finite number of spectroscopic models by mineral combination type. Joint Conference of the Geological Science & Technology of Korea, KSEEG, Gwangju, April 22-24, pp.191.
  20. Kuosmanen, V., Laitinen, J., Eilu, P. and Ojala, J. (2005) Study of alteration indications using VSWIR reflectance of drillcores from the Harmankyla gold prospect, Kuhmo, NE Finland. Geologicla Suvey of Finland, 26p.
  21. Noh, J.H. and Cho, H.G. (1993) Mineralogical characterization of the Chuncheon Neprite: Mineral facies, mineral chemistry, and pyribole structure. J. Miner. Soc. Korea, v.6, p.57-79.
  22. Noh, J.H., Cho, H.G. and Choi, J.B. (1995) Crystal chemistry and paragenesis of calc-silicate minerals from meta-sedimentary rocks in Chuncheon area: (1) Occurrence, mineralogy, and paragenesis. J. Miner. Soc. Korea, v.8, p.57-72.
  23. Pak, S-.J., Choi, S-.G., Kim, C.S. and Lee, D.E. (2001) Application of short-wave infrared spectroscopy to define alteration zones associated with the Mugeug Au-Ag deposit, Korea. Conference of the Korean Society of Economic and Environmental Geology, KSEEG, Hanyang Univ., Ansan, April 27-28, p.253-255.
  24. Scott, K.M and Yang, K. (1997) Spectral reflectance studies of white micas. Australian Mineral Industries Research Association Ltd., CSIRO/AMIRA Project P435, 35p.
  25. Song, Y.S. (2001) Gold-silver mineralization in the Suryun mine: Application of short-wave infrared spectroscopy to the study of hydrothermal alteration. Ms Thesis (unpublished), Korea University, Seoul, Korea. 91p.
  26. Swayze, G.A., Clark, R.N., Goetz, A.F.H., Livo, K.E., Breit, G.N., Kruse, F.A., Stutley, S.J., Snee, L.W., Lowers, H.A., Post, J.L., Stoffregen, R.E. and Ashley, R.P. (2014) Mapping advanced argillic alteration at Cuprite, Nevada using imaging spectroscopy. Economic geology, v.109, p.1179-1221. https://doi.org/10.2113/econgeo.109.5.1179
  27. Zaini, N., van der Meer, F. and van der Werff, H. (2012) Effect of grain size and mineral mixing on carbonate absorption features in the SWIR and TIR wavelength regions. Remote Sensing, v.4, p.987-1003. https://doi.org/10.3390/rs4040987

Cited by

  1. The Characterization of Pyrophyllite Based Ceramic Reactive Media for Permeable Reactive Barriers vol.31, pp.4, 2018, https://doi.org/10.9727/jmsk.2018.31.4.227