• Title/Summary/Keyword: 연직 drain

Search Result 113, Processing Time 0.022 seconds

Applicability of Cross Shaped Drain to Soft Clay Improvement (십자형 연직배수재의 점성토지반 개량에의 적용성)

  • 장연수;김영우;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.9-16
    • /
    • 2000
  • Applicability of the cross shaped drain in a soft clay ground is examined using the laboratory discharge capacity test, column consolidation test and 3-D numerical flow analysis. The equivalent diameter of the tested drains is back-calculated from the laboratory experiment and compared with those calculated from the formula suggested in the literature. The effective range of the cross shaped drain about the discharge capacity and coefficient of permeability is analyzed. The results of numerical analysis show that the cross shaped drain which has a cross-sectional area twice of the band shaped drain can reduce the consolidation time by 30% from that for the band shaped drain in a soft clay ground that K is over 1${\times}$10$\^$-7/cm/sec

  • PDF

The Discharge Capacity Test & Vertical Drain Adoption Considering the Ground Condition (지반특성을 고려한 연직배수재의 통수능 시험 및 선정)

  • Jung, Hun-Chul;Shin, Kyung-Ha;Jung, Ki-Moon;Huh, Jip
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.373-382
    • /
    • 2007
  • In the vertical drain method, discharge capacity is generally one of the most important factor which affect on the estimation of the drain efficiency. However, adopting the drain considering discharge capacity only is not sufficiently considered method so that systematic criteria for adoption is necessary to choose the most suitable drain. Therefore, this study represents the application method considering behavior of the ground and vertical drain which is coupled together and ground improvement efficiency analyzing various cases of discharge capacity test performed in the recent soft ground improvement projects. According to the analysis, most drains tend to satisfy the required discharge capacity. It presents that deformed shape of the drains and well resistance estimation along the ground settlement, improvement efficiency by water content ratio along the depth and shear strength obtained after ground improvement should be considered altogether with the discharge capacity to select the proper drain. Also, appropriate adoption of drain material considering the ground condition is vital through analyzing the field measured data and comparing the result of the discharge capacity test as various vertical drain materials are being constructed continuously.

  • PDF

Finite element analysis for the difference of displacement behavior developed from suction drain method and vertical drain method (Suction 연직배수 공법과 PDB 공법의 변위거동 차이에 대한 유한 요소 해석)

  • Kim, Ki-Nyeon;Ahan, Dong-Wook;Han, Sang-Jae;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1165-1172
    • /
    • 2006
  • In this study, an aspect of settlement, developed from different ground improvement method like suction drain method using vacuum pressure and vertical drain method using overburden pressure, was compared each other. In order to analyze settlement tendency of each method exactly, the finite element analysis program was used. The analyses of vertical settlement and lateral displacement for suction drain method and vertical drain method were conducted independently during the solving stage. The initial condition of drainage zone was fixed with 25m depth and 21m width. After the program analyses, the settlement condition had a different tendency with the ground improvement method. Especially, in the results of vertical drain method, the disparity of settlement between the middle of improved zone and unimproved zone. In the case of suction drain method, however, the difference of settlement was smaller than that of vertical drain method.

  • PDF

Performance of a Chimney Drain in Reinforced Earth Wall for Reduction of Pore Water Pressure During Rainfall - a Numerical Investigation (보강토 옹벽에 적용되는 연직 배수시스템의 강우시 수압 저감 효과 - 수치해석 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Jung, Hyuk-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.99-106
    • /
    • 2008
  • This study is concernsed with the effect of a chimney drainage system installed at the back of reinforced soil block on preventing the pore water pressure development. A series of finite-element analyses based on transient seepage analysis were performed for a number of cases with different patterns of the chimney drainage system. The results were thoroughly analyzed to get insight into the mechanism of pore water pressure reduction effect of the chimney drainage system. It is shown that a vertical drainage system installed at the back of reinforced zone can be an effective means of maintaining the wall stability during rainfall by preventing pore pressure increase in the reinforced as well as the backfill zones. Also shown is that the optimum height of the chimney drain is 50% of the wall height. Practical implications of the findings were discussed.

Sensitivity Analyses of Influencing Factors on Vertical Drain with Probabilistic Method (확률론적 해석법에 의한 연직배수 영향인자 민감도 분석)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Jeong, KiI-Soo;Kim, Dong-Gun
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.83-92
    • /
    • 2006
  • A probabilistic analysis model. one of reliability analysis methods introducing the concept of variables, was developed to investigate the uncertainty of dominant factors influencing the degree of consolidation in the radial consolidation theories. Based on the developed probabilistic analysis model, sensitivity study of those factors was performed to find their trends of affecting the degree of consolidation in the vertical drain method. Various radial consolidation theories, proposed by Barron(1948), Hansbo(1979), Yoshikuni(1979) and Onoue(1988), were used for this parametric study with the influencing factors such as size of smear zone, reduction ratio of permeability in the smear zone, discharge capacity, permeability for horizontal flow and coefficient of consolidation for horizontal flow. As results of this sensitivity study, for the given consolidation theory, contribution of each factor to the degree of consolidation was figure out and compared to each other. For the given value of each factor, the sensitivity to the degree of consolidation in the various theories was evaluated and their applicability and limitations were assessed.

  • PDF

Consolidation Behavior of Soft Ground by prefabricated Vertical Drains (연직드레인 공법에 의한 연약지반의 압밀거동)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.133-143
    • /
    • 2000
  • A large scale field test of prefabricated vertical drains was performed to anayze the effect of parameters of the very soft clay at a test site. compression index and the coefficient of horizontal consolidation obtained by back-analysis of settlement data were compared with those obtained by means of laboratory tests. Hyperbolic method, Asaoka meoth and curve fitting method were used to compute final settlement of coefficient of consolidation. The relationships of settlement measurement(Sm) versus design settlement(St) and the measurement consolidation ratio(Um) versus design consolidation (Ut) were shown as Sm=(1.0~1.1) St , Um=(1.13~1.17) Ut at 1.0m spacing of drain and Sm=(0.7~0.8)St, Um= (0.92~0.99) Ut at 1.5 m spacing of drain, respectively . The relationships of the field compression index(CcField) and virgin compression index(vcc lab) were shown as Ccfield =(1.0~1.2)vcc lab . But it was nearly within the same range when considering the error factor with the determination method of virgin compression index and the prediction back-analysis of the settlement data was larger than the coefficient of vertical consolidation, and the ratio of consolidation coefficient (Ch/Cv) was Ch =(2.4~2.9) Cv , Ch=(3.4~4.2) Cv at 1.0m and 1.5m spacing of drain, respectively.

  • PDF

Effect of the Overlapping Smear Zone on the Consolidation of Clayey Soil (스미어 영역 겹침이 점성토 지반의 압밀에 미치는 영향)

  • Yune, Chan-Young;Kim, Beom-Jun;Kang, Hee-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.13-22
    • /
    • 2013
  • To simulate the soft ground improved by vertical drain method and to investigate the effect of overlapping smear on subsequent consolidation behavior, a series of consolidation tests with a large consolidation chamber and mandrel insertion device were conducted. Based on the test result, numerical analysis was also performed to analyze the efficiency of the vertical drain method. Laboratory test and numerical analysis results showed that the effect of smear zone increased consolidation settlement but the overlapping smear zone decreased the consolidation settlement. In addition, vertical drain accelerated consolidation rate but narrowing the drain spacing did not affect the consolidation rate because of the effect of smear. The efficiency of consolidation rather decreased substantially when the smear zone was overlapped.

Evaluation of the Smear Zone by Numerical Analysis Method (수치해석에 의한 스미어 존 평가)

  • Kang, Yun;Nam, Yelwoo;Lee, Seombeom;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.35-40
    • /
    • 2007
  • The vertical drain method recently being used in Korea is divided into the sand drain method, the pack drain method, the paper drain method, and the PBD method according to the drainage. However, these methods generate the disturbed zone called the smear zone when the drainage is penetrated into the in-situ ground. The characteristics of the smear zone generated cause the problems that the coefficient of permeability decreases and the consolidation time becomes longer than expected in the design. Although the size of the smear zone is a very important factor directly influencing the degree of consolidation, in the existing studies, the general value for the size of the smear zone proposed has been used in the design. However, the size of the smear zone proposed by the existing studies cause a loss of economical efficiency because of the inaccuracy of the design. Hence, in this study, the characteristics on the size of the smear zone were analyzed by carrying out the three dimensional numerical analysis and the method to determine the conversion size of the smear zone considering the change of the coefficient of permeability was proposed in order to consider the change of the coefficient of permeability in the actual design.

  • PDF

Numerical Analysis of Soil Vapour Extraction Remediation System using Prefabricated Vertical Drain (토목섬유 연직배수재를 활용한 토양증기추출복원시스템의 수치해석)

  • Shin, Eun-Chul;Park, Jeong-Jun;Lee, Kyu-Woong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. However, soil vapor extraction becomes ineffective in soils with low gas permeability, for example soils with air permeabilities less than 1 Darcy. The aim of this study is to investigate numerically the performance of a prefabricated vertical drain (PVD) as a SVE well, and the pattern of the induced air flow. A validated numerical model for a single PVD extraction well is developed based on the result of a well-designed laboratory model test. The validity of the simple analytical approach to determine air permeability based on the results of model tests is also discussed.

  • PDF

A Study on the Consolidation Settlement Due to the Vertical Drain Method by the Implicit Finite Difference Scheme (음적차분해석법을 이용한 연직배수 공법에 의한 압밀침하에 관한 연구)

  • Park, Sung Zae;Jung, Du Hwoe;Jeong, Gyeong Hwan;Lee, Kyeong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1243-1251
    • /
    • 1994
  • The implicit finite difference program was developed to evaluate the relationship between time and consolidation ratio within the zone of vertical drain effective radius. In the evaluation, the excess pore water pressure was considered to dissipate in two directions, namely, vertical and radial flow direction. To calculate subsoil stress increments in the soil due to multi-step embanking, the foundation soil was assumed to be an isotropic and homogeneous elastic medium and the initial excess pore water pressure was estimated by using Skempton's parameters whose condition is plane strain and elastic phase of pore pressure response within the soft ground. Regarding to the settlement estimation, immediate and primary consolidation settlements were calculated. The secondary or delayed consolidation settlement was not considered. Numerically calculated excess pore water pressure and settlements were similar to the measured data in situ. Thus, this method can be used to predict the time-consolidation ratio of each layer treated by vertical drain method.

  • PDF