• Title/Summary/Keyword: 연속 충전 시뮬레이션

Search Result 3, Processing Time 0.018 seconds

Analysis of Back-to-back Refueling for Heavy Duty Hydrogen Fuel Cell Vehicles Using Hydrogen Refueling Stations Based on Cascade System (캐스케이드 시스템 기반 수소 충전소를 이용한 대형 수소 연료 전지 차량 연속 충전 분석)

  • GYU SEOK SHIM;BYUNG HEUNG PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.300-309
    • /
    • 2024
  • Hydrogen utilization in the transportation sector, which relies on fossil fuels, can significantly reduce greenhouse gas by using to hydrogen fuel cell vehicles, and its adoption depends performance of hydrogen refueling station. The present study developed a model to simulate the back-to-back filling process of heavy duty hydrogen fuel cell vehicles at hydrogen refueling stations using a cascade method. And its quantitatively evaluated hydrogen refueling station performance by simulating various mass flow rates and storage tank capacity combinations, analyzing vehicle state of charge (SOC) of vehicles. In the cascade refueling system, the capacity of the high-pressure storage tank was found to have the greatest impact on the reduction of filling time and improvement of efficiency.

Analysis of RTM Process Using the Extended Finite Element Method (확장 유한 요소 법을 적용한 RTM 공정 해석)

  • Jung, Yeonhee;Kim, Seung Jo;Han, Woo-Suck
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.363-372
    • /
    • 2013
  • Numerical simulation for Resin Transfer Molding manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions. Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with a simple channel flow model. Several application examples are analyzed to demonstrate ability of this method.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF