• Title/Summary/Keyword: 연속체 모델

Search Result 225, Processing Time 0.025 seconds

A Comparison of Barton-Bandis Joint Model and Mohr-Coulomb Joint Model for Tunnel Stability Analysis with DEM (개별요소법을 이용한 터널 안정성 해석에 있어 Barton-Bandis 절리 모델과 Mohr-Coulomb절리 모델의 비교)

  • 이성규;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • The joint model has influence on the results of discontinuum analysis. In this study the results of discontinuum analysis with Barton-Bandis joint model(BB model) and with Mohr-Coulomb joint model(MC model) are compared. The results of continuum analysis under the same condition are compared with the results of discontinuum analysis to investigate the behavior of rockmass around tunnel. The result of continuum analysis and that of discontinuum analysis with BB model show similar distribution of displacement and stress. On the other hand, the discontinuum analysis with MC model shows different displacement distribution and stress distribution. Moreover, the displacement and minor principal stress of the discontinuum analysis with MC model are smaller than those of continuum analysis, although the joints are explicitly considered in the discontinuum analysis. These results are originated from the limitation of MC model in simulating joint deformation behavior, especially the assumption of constant dilation jingle independent of it)int 7hear displacement.

  • PDF

A new steel jacketing method for RC columns and a modified constitutive model of jacketed concrete (RC 기둥 보강을 위한 새로운 강판 보강기법 및 수정 연속체 모델)

  • Tae, Ghi Ho;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.675-681
    • /
    • 2008
  • This study introduced a new steel-jacketing method to retrofit RC columns. It also estimated the performance of steel-jacketed concrete cylinders. Twelve concrete cylinders were fabricated with varying steel jacket thicknesses of 1.0, 1.5, and 2.0 mm. Lateral confining pressure was applied with three clamps and the performance of plain concrete cylinders was compared with that of steel-jacketed cylinders. Steel jacket proved to be effective in increasing the strength of the cylinder. Finally, Li's constitutive model was compared with that of the experimentalresults. However, Li's model showed incongruity in Region II, which indicates the region after the yield of steel jackets. Therefore, the modified value of n was used for the region and the model showed a good agreement.

Hydraulic Analysis of a Discontinuous Rock Mass Using Smeared Fracture Model and DFN Model (DFN 모델과 스미어드 균열 모델을 이용한 불연속 암반의 3차원 수리해석)

  • Park, Jungchan;Kim, Jin-Seop;Lee, Changsoo;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.318-331
    • /
    • 2019
  • A three-dimensional(3D) equivalent continuum modeling was performed to analyze hydraulic behavior of rock mass considering discontinuities by using DFN model and smeared fracture model. DFN model was generated by FLAC3D and smeared fracture model was applied by using FISH functions, which is built-in functions in FLAC3D, for equivalent continuum model of fractured rock mass. Comparative analysis with 3DEC, which is for discontinuum analysis, was conducted to verify reliability of equivalent continuum analysis by using FLAC3D. Similar results of hydraulic analysis under the same conditions could be achieved. Equivalent continuum analysis of fractured rock mass by using DFN model was implemented to compare with existing analytical methods for inflow into the tunnel.

An analysis of horizontal deformation of a pile in soil using a continuum soil model for the prediction of the natural frequency of offshore wind turbines (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 연속체 지반 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Lee, Jong-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.480-490
    • /
    • 2016
  • As wind turbines become larger and lighter, they are likely to respond sensitively by dynamic loads applied on them. Since the responses at resonances are particularly interested, it is required to be able to predict natural frequencies of wind turbines reliably at early design stage. To achieve this, the foundation-soil analysis is needed to be carried out and a finite element approach is adopted in general. However, the finite element approach would not be appropriate in early design stage because it demands heavy efforts in pile-soil modelling and computing facilities. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to handle. Therefore, they would be a useful tool in predicting a pile-soil interaction, particularly in early design stage. In this study an analysis for a pile inserted in soil is performed. The pile and soil are modelled as a beam and continuum medium, respectively, within an elastic range. In this analysis, influence factors at the pile head for lateral loads are predicted by means of this continuum approach for various length-diameter ratios of the pile. The influence factors predicted are validated with those reported in literature, proposed from a finite element analysis.

A Study on Continuum Modeling of Large Platelike Lattice Structures (거대한 평판형 격자구조물의 연속체 모델링에 관한 연구)

  • 이우식;신현재
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.105-112
    • /
    • 1990
  • A rational and straightforward method is introduced for developing continuum models of large platelike periodic lattice structures based on energy equivalence, The procedure for developing continuum models involves using existing finite element matrices in calculating strain and kinetic energies of a repeating cell. The equivalent continuum plate properties are obtained from the direct comparison of the reduced stiffness and mass matrices for continuum and lattice plates. Numerical results prove that the method developed in this paper shows very good agreement with other well-recognized methods.

  • PDF

Shear behavior at the interface between particle and non-crushing surface by using PFC (PFC를 이용한 입자와 비파쇄 평면과의 접촉면에서의 전단 거동)

  • Kim, Eun-Kyung;Lee, Jeong-Hark;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.293-308
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. In order to investigate the effects of particle shape and crushing on particle/surface interface behavior, one ball, clump, and cluster models were created and their results were compared. The shape of particle was characterized by circle, triangle, square, and rectangle, respectively. The results showed that as the surface roughness increases, interface strength and friction angle increase and the void ratio increases. The one ball model with smooth surface shows lower interface strength and friction angle than the clump model with irregular surface. In addition, a cluster model has less interface strength and friction angle than the clump model. The failure envelope of the cluster model shows non-linear characteristic. From these findings, it is verified that the surface roughness and particle shape effect on the particle/surface interface shear behavior.

A Study on Comparison and Application of Numerical Models to Experiments in Discontinuous Rock Mass (불연속성 암반에서의 수치모델 검토 및 시험과의 비교.적용에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • In general, there are various approaches available in literature to model discontinuous rock masses and engineers are often confused which one to use for designing structures in rock masses. Modelling rock masses can be classified mainly into two approaches. One is discrete modelling of intact rock and discontinuities and the other is the equivalent continuum modelling. In this study five models are selected ;(1) Crack tensor model, (2) Equivalent volume defect model, (3) Damage model, (4) Micro - structure model (Parallel model and Series model), and (5) Homogenization model. Most of these models are mainly concerned with how to define additional strain due to discontinuities over the representative elementary volume (REV) and how to relate the stress field of discontinuities to that acting on the REV. The characteristics of these models are clarified by comparing with results of some laboratory tests.

  • PDF

A Study of New Approach on Elasto-Plastic Analysis of shell Structures (쉘구조물의 탄소성해석에 관한 새로운 해석법의 연구)

  • Kwun Taek Jin;Park Kang Geun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.3
    • /
    • pp.5-14
    • /
    • 1987
  • 연속체의 해석에 있어서, 특별한 경우를 제외하고는, 구조물의 개략적인 거동을 파악해야 될 경우가 종종 있다. 이러한 요구에 부응하기 위해서 강체요소법(Rigid Element Method)이라 불리우는 새로운 해석법이 개발되었다. 강체요소법은 원래 평정연구실에서 벽식프리캐스트 철근콘크리트 구조물의 탄소성해석을 하기 위해서 개발된 해석법에 착안하여, 내수벽과 같은 연속체에 적용함으로서 시작된 수치해석법이다. 그 후 저자들은 도통쉘, 구형쉘 혹은 이들이 조합된 쉘구조물에 적용할 수 있도록 개발 확장하였다. 강체요소법의 기본개념은 연속체의 분해된 각 요소를 강체(rigid body)라고 가정하고, 각 요소들은 요소의 강성으로 치환된 가상스프링으로 서로 연결되어 있다고 가정하여, 이 가상스프링의 거동을 평가함으로서 전체구조물의 거동을 파악하는 해석법이다. 이때 요소의 주변에 취해진 스프링은 해석을 단순화하기 위해서 축력, 면내전단력 및 면외전단력만을 전달한다고 가정하고, 요소의 강체변위(자유도)는 요소내의 임의의 한 점에서 취하며, 이 점에서의 강체변위(rigid displacements)는 요소의 주변에 취해진 스프링을 통하여 다른 요소로 전달된다. 상기와 같은 강체요소법의 개념을 연속체의 탄성 및 탄소성해석에 적용하면, 해석적 개념이 단순할 뿐만 아니라 구조물 전체의 자유도수를 대폭 줄여 컴퓨터 계산시간을 절약할 수 있는 잇점이 있고, 거시적인 모델(macroscopic modeling)과 미시적인 모델 (microscopic modeling)의 중간적인 성격을 가지기 때문에 구조물의 파괴상황에 대해서도 그 개략을 파악할 수 있다. 본 논문에서는 강체요소법을 보다 일반화된 해석법으로 개발, 확장하기 위해서 종전에 단층스프링시스템(single-layer spring system)으로 해석이 어려웠던 문제점들을 보완한 복층프링시스템(double-layer spring system)을 사용함으로서 휨, 비틀림의 효과를 파악할 수 있는 이론적 개념을 적용한 새로운 구요소, 원통요소 및 평면요소를 개발하고, 이러한 강체요소들의 적합매트릭스의 유도 및 해석저긴 방법을 정식화하였다. 또 휨, 비틀림 및 전단력의 효과를 고려한 사각형원통요소 및 능형원 통요소를 이용하여 원통쉘의 탄성 및 탄소성해석할 수 있는 프로그램을 개발하고, 이 프로그램으로 캔틸레버로된 연속형철근콘크리트 원통쉘의 탄성 및 탄소성해석에 적용하여 구조물의 거동에 관한 수치해석의 결과, 즉 내력의 분포, 균열의 진전, 파괴의 상황 및 변형의 상태 등을 파악해 보았다.

  • PDF

Elasto-Plasticity of Granular Micro-Structures (미소구조에서의 탄소성모델)

  • Park Jae-gyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.453-458
    • /
    • 2005
  • This study deals with elasto-plasticity of granular micro-structures which recovers continuum elasto-plasticity in its counterpart. The theory is based on doublet mechanics that assumes particles of finite size and connecting linear springs, and it makes extensions to plasticity. The result shows that the micro model has one to one relationship with the continuum model in the simplest case. Micro-strain and micro-stress of two dimensional plane stress problem were calculated, which shows the behavior of the specimen and verifies the effectiveness of this model.

나노-연속체 멀티스케일 해석과 통계적 접근법

  • Jo, Maeng-Hyo;Sin, Hyeon-Seong
    • Journal of the KSME
    • /
    • v.54 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • 이 글에서는 나노재료의 멀티스케일 해석에 있어서 재료 구성/조성의 불확실성과 해석 모델의 불확실성을 고려하는 통계적 접근의 중요성과 그 방법에 대해 소개하고자 한다.

  • PDF