• Title/Summary/Keyword: 연성-취성

Search Result 226, Processing Time 0.026 seconds

Studies on the Frost Heave Revelation and Deformation Behaviour due to Thawing of Weathered Granite Soils (화강암 풍화토의 동상 발현 및 융해에 따른 변형 거동에 관한 연구)

  • 류능환;최중대;류영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.61-71
    • /
    • 1995
  • Natural ground is a composite consisted of the three phases of water, air and soil paircies. Among the three components, water as a material is weU understood but soil particles are not in foundation engineering. Especially, weathered granite soil generally shows a large volumetric expansion when they freeze. And, the stability and durability of the soil have shown decreased with repetitive freezing and thawing processes. These unique charcteristics may cause various construction and management problems if the soil is used as a construction material and foundation layers. This project was initiated to investigate the soil's physical and engineering characteristics resulting from freezing and freezing-thawing processes. Research results may be used as a basic data in solving various problems related to the soil's unique characteristics. The following conclusions were obtained: The degree of decomposition of weathered granite soil in Kangwon-do was very different between the West and East sides of the divide of the Dae-Kwan Ryung. Soil particles distributed wide from very coarse to fine particles. Consistency could be predicted with a function of P200 as LL=0.8 P200+20. Permeability ranged from 10-2 to 10-4cm/sec, moisture content from 15 to 20% and maximum dry density from 1.55 to 1.73 g /cmΥ$^3$ By compaction, soil particles easily crushed, D50 of soil particles decreased and specific surface significantly increased. Shear characteristics varied wide depending on the disturbance of soil. Strain characteristics influenced the soil's dynamic behviour. Elastic failure mode was observed if strain was less than 1O-4/s and plastic failure mode was observed if strain was more than 10-2/s. The elastic wave velocity in the soil rapidly increased if dry density became larger than 1.5 g /cm$^3$ and these values were Vp=250, Vg= 150, respectively. Frost heave ratio was the highest around 0 $^{\circ}C$ and the maximum frost heave pressure was observed when deformation ratio was less than 10% which was the stability state of soil freezing. The state had no relation with frost depth. Over freezing process was observed when drainage or suction freezing process was undergone. Drainage freezing process was observed if freezing velocity was high under confined pressure and suction frost process was occurred if the velocity was low under the same confined process.

  • PDF

Comparative Study on the Flexural Performance of Concrete Reinforced with Polypropylene and Steel Fibers (폴리프로필렌 및 강섬유 보강콘크리트의 휨 성능에 관한 비교 연구)

  • Cho, Baiksoon;Lee, Jong-Han;Back, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1677-1685
    • /
    • 2014
  • Short discrete fibers compounded with concrete can enhance the tensile resistance and ductility of concrete. Recently, the effectiveness of the reinforcement has increased according to the increasing length of steel fiber. However, the lengthening of steel fiber requires reducing the ratio of the fiber content to remain the workability and quality of concrete. Thus, the present study evaluated the flexural performance of fiber reinforced concrete with less than l.0% fiber volume ratios of steel fiber, 30mm and 60mm long, and polypropylene fiber, being evaluated as a good reinforcing material with chemical stability, long-term durability, and cost effectiveness. Concrete with more than 0.25% steel and 0.5% polypropylene fibers improved the brittle failure of concrete after reaching cracking strength. Concrete reinforced with polypropylene exhibited deflection-softening behavior, but that with more than 0.5% polypropylene delayed stress reduction and recovered flexural strength by 60 to 80% after cracking strength. In conclusion, concrete reinforced with more than 0.75% polypropylene could improve structural flexural performance. In particular, energy absorption capacity of reinforced concrete with 1.0% polypropylene fiber was similar to that with 0.5% and 0.7% steel fibers.

A Study on the Variations of Impact Strength of Plastics for Various Thicknesses and Notch Formation (두께와 노치생성방법에 따른 플라스틱 수지의 충격강도 변화에 관한 연구)

  • Kim, Hyun;Lee, Dae-Seop;Lim, Jae-Soo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • The impact strength of material is considered the most important design factor for small and light products. Impact strength is a unique material property, thus the impact strength should not depend upon the geometry of specimen. However it varies according to specimen thickness, notching method, and notch shape. In this study, the variations of impact strength have been investigated according to thickness, notch shape, and notching method of specimen. Engineering plastics such as PC, ABS and POM have been used in this study. Experimental results showed impact strength increased as thickness decreasesd. PC showed the highest increment of impact strength when the thickness was thin. Fractured section of PC showed brittle fracture behavior when the specimen was thick. However it showed ductile fracture behavior when it was thin. The impact strength of in-mold notched specimen showed higher than that of milling notched specimen. PC showed the highest notch sensitivity among the materials used in this experiment.

Analysis of Hydraulic Fracture Geometry by Considering Stress Shadow Effect during Multi-stage Hydraulic Fracturing in Shale Formation (셰일저류층의 다단계 수압파쇄에서 응력그림자 효과를 고려한 균열형태 분석)

  • Yoo, Jeong-min;Park, Hyemin;Wang, Jihoon;Sung, Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.20-29
    • /
    • 2021
  • During multi-stage fracturing in a low permeable shale formation, stress interference occurs between the stages which is called the "stress shadow effect(SSE)". The effect may alter the fracture propagation direction and induce ununiform geometry. In this study, the stress shadow effect on the hydraulic fracture geometry and the well productivity were investigated by the commercial full-3D fracture model, GOHFER. In a homogeneous reservoir model, a multi-stage fracturing process was performed with or without the SSE. In addition, the fracturing was performed on two shale reservoirs with different geomechanical properties(Young's modulus and Poisson's ratio) to analyze the stress shadow effect. In the simulation results, the stress change caused by the fracture created in the previous stage switched the maximum/minimum horizontal stress and the lower productivity L-direction fracture was more dominating over the T-direction fracture. Since the Marcellus shale is more brittle than more dominating over the T-direction fracture. Since the Marcellus shale is more brittle than the relatively ductile Eagle Ford shale, the fracture width in the former was developed thicker, resulting in the larger fracture volume. And the Marcellus shale's Young's modulus is low, the stress effect is less significant than the Eagle Ford shale in the stage 2. The stress shadow effect strongly depends on not only the spacing between fractures but also the geomechanical properties. Therefore, the stress shadow effect needs to be taken into account for more accurate analysis of the fracture geometry and for more reliable prediction of the well productivity.

A Study on the Properties of Transition Metal Nitride Coating Materials for the Recovery of Tungsten and Rare Metals (텅스텐 및 희유금속 회수를 위한 초경합금 전이금속질화물 코팅소재 특성연구)

  • Kim, Jiwoo;Kim, Myungjae;Kim, Hyokyeong;Park, Sohyun;Seo, Minkyeong;Kim, Jiwoong
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.46-55
    • /
    • 2022
  • The recycling of coated cemented carbide scraps is becoming increasingly significant for the recovery of rare metals. However, coatings consisting of Group IV and V transition metal nitrides are one of the challenging factors in obtaining high-purity materials. We investigated the structural, elastic, and mechanical properties of Group IV and V transition-metal nitrides (TiN, VN, ZrN, NbN, HfN, and TaN) using first-principle calculations. Convergence tests were performed to obtain reliable calculated results. The equilibrium structures of the nitrides were in good agreement with those of a previous study, indicating the reliability of the data. Group IV transition metal nitrides show a higher covalent bonding nature. Thus, they exhibit a higher degree of brittleness than that of Group V transition metal nitrides. In contrast, Group V transition metal nitrides show weaker resistance to shear loading and more ductile behavior than Group IV transition metal nitrides because of the metallic bonds characterized by valence electron concentration. The results of the crystal orbital Hamilton population analysis showed good agreement with the shear resistance tendencies of all transition metal nitrides.

An Experimental Study on Seismic Performance of Two-story Reinforced Concrete Frames Retrofitted with Internal Steel Frame and Wall Type Friction Damper (내부 철골끼움골조 및 벽체형 마찰댐퍼(WFD)로 보강된 2층 철근콘크리트골조 내진성능에 대한 실험적 연구)

  • Yoo, Chang-Gi;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.64-72
    • /
    • 2022
  • In this study, in order to confirm the seismic performance of reinforced concrete frames retrofitted with Wall Friction Damper(WFD), the test was conducted by setting two-story Reinforced concrete frames (reference specimen, OMF-N and specimen retrofitted with internal H-shaped steel frame and WFD, OMF-ALL(H)) as main variables. The WFD Seismic Retrofit Method is a mixture of strength improvement and energy dissipation methods. To prevent the pre-destruction of existing structure by friction force before sufficient energy dissipation of WFD, the internal H-shaped steel frame and chemical anchor that penetrates the side of the beam were used to install WFD. According to the test results, the OMF-N specimen showed an brittle failure pattern caused by the shear force of the R/C column after the maximum strength was expressed. The OMF-ALL(H) specimen showed that the reduction of pinching effect and the failure of the RC column occurred. Also, the maximum strength, cumulative energy dissipation and ductility of OMF-ALL(H) increased 3.01 times, 7.2 times and 1.72 times for OMF-N. As a results, test results revealed that the WFD Seismic Retrofit Method installed on Reinforced concrete structure improves the seismic performance and the strengthening effect is valid.

Structural Performance Evaluation of Reinforced Concrete Column Reinforced with Aramid Fibers and PET Fibers (아리미드섬유와 PET섬유시트로 보강한 철근콘크리트 기둥의 구조성능평가)

  • Dong-Hwan Kim;Min-Su Jo;Jin-Hyeung Choi;Woo-Rae Cho;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • This study evaluates the performance of reinforced concrete columns using hybrid fiber sheets for structural behavior. The purpose of this method is to improve the load-bearing capacity of the reinforced structure by impregnating a hybrid fiber sheet, which is woven by arranging aramid and glass fibers uniaxially and attached to an aged concrete structure requiring reinforcement with epoxy. In particular, not only the weight reduction of the material obtained by using a fiber lighter than the steel material, but also the low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element. The low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element, resulting in weight reduction compared to steel. The study conducted structural tests on four specimens, with the hybrid reinforcement method and failure mode as main variables. Specimen size and loading conditions were chosen to be comparable with previous studies. The structural performance of the specimen was evaluated using energy dissipation capacity and ductility. Analysis shows that excellent results can be obtained with the hybrid fiber sheet reinforcement.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers (단섬유를 사용한 시멘트 혼합토의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Young-Su;Choi, Sun-Gyu;Shin, Shi-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.213-220
    • /
    • 2008
  • A study on cemented sand reinforced with short fibers was carried out to improve its unconfined compressive strength and brittle behavior. Nak-dong River sand was mixed with Portland cement and polyvinyl alcohol (PVA) fibers. A PVA fiber widely used for concrete reinforcement is randomly distributed into cemented sand. Nak-dong River sand, cement and fibers with optimum water content were compacted in 5 layers and then cured for 7 days. The effect of fiber reinforcement rather than cementation was emphasized by using a small amount of cement. Weakly cemented sand with a cement/sand ratio less than 8% was fiber-reinforced with different fiber ratios and tested for unconfined compression tests. The effect of fiber ratio and cement ratio on unconfined compressive strength was investigated. Fiber-reinforced cemented sand with 2% cement ratio showed up to six times strength to non-reinforced cemented sand. Because of ductile behavior of fiber-reinforced specimens, an axial strain at peak stress of specimens with 2% cement ratio increases up to 7% as a fiber ratio increases. The effect of 1% fiber addition into 2% cemented sand on friction angle and cohesion was analyzed separately. When the fiber reinforcement is related to friction angle increase, the 8% of applied stress transferred to 1% fibers within specimens.

Shear Strengthening Effect on Reinforced Concrete Beams Strengthened by Vertical Slit Type Steel Plates (수직 Slit형(形) 강판으로 전단보강된 철근콘트리트 보의 전단보강효과)

  • Lee, Choon-Ho;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.195-204
    • /
    • 2009
  • Application of steel plates is one of widely used methods for shear strengthening of reinforced concrete beams that are insufficient of shear capacity. While the existing method applying solid steel plates provides good shear rigidity, however, it is concerned by brittle bond failure patterns, inefficient material usage, and low constructability. The use of strap type steel plates has also shortcomings of low strenthening effect due to small interface bonding area and ununified behavior between plates and main body. Therefore, this study aims to introduce the shear strengthening method using slit type steel plate, which can solve out the problems aforementioned, and to verify its strengthening effects on shear capacity. A total of 13 specimens strengthened by slit type steel plates were fabricated with primary test parameters of plate width, slit spacing, and plate thickness. The test results from this study were also compared to those from the existing research on RC beams strengthened by strap type steel plates, and the strengthening effects on shear capacity of specimens having bonded slit type steel plates were quantitatively analyzed. The test results showed that the RC beams strengthened by slit type steel plates had greater shear capacities than those with strap type steel plates, which is considered to be the effects of improved composite behavior and larger interface bonding area in the RC beams strengthened by the slit type steel plates.