• Title/Summary/Keyword: 연산 효율

Search Result 2,610, Processing Time 0.033 seconds

Data Cude Index to Support Integrated Multi-dimensional Concept Hierarchies in Spatial Data Warehouse (공간 데이터웨어하우스에서 통합된 다차원 개념 계층 지원을 위한 데이터 큐브 색인)

  • Lee, Dong-Wook;Baek, Sung-Ha;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1386-1396
    • /
    • 2009
  • Most decision support functions of spatial data warehouse rely on the OLAP operations upon a spatial cube. Meanwhile, higher performance is always guaranteed by indexing the cube, which stores huge amount of pre-aggregated information. Hierarchical Dwarf was proposed as a solution, which can be taken as an extension of the Dwarf, a compressed index for cube structures. However, it does not consider the spatial dimension and even aggregates incorrectly if there are redundant values at the lower levels. OLAP-favored Searching was proposed as a spatial hierarchy based OLAP operation, which employs the advantages of R-tree. Although it supports aggregating functions well against specified areas, it ignores the operations on the spatial dimensions. In this paper, an indexing approach, which aims at utilizing the concept hierarchy of the spatial cube for decision support, is proposed. The index consists of concept hierarchy trees of all dimensions, which are linked according to the tuples stored in the fact table. It saves storage cost by preventing identical trees from being created redundantly. Also, it reduces the OLAP operation cost by integrating the spatial and aspatial dimensions in the virtual concept hierarchy.

  • PDF

Design of Low-complexity FFT Processor for Multi-mode Radar Signal Processing (멀티모드 레이다 신호처리를 위한 저복잡도 FFT 프로세서 설계)

  • Park, Yerim;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, a multi-mode radar system was designed for efficient operation of unmanned aerial vehicles (UAVs) in various environments, which has the advantage of being able to integrate and utilize methods of the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar. For the range detection part of the multi-mode radar signal processor (RSP), the hardware structure using the FFT processor and the IFFT processor is required to be designed in a way that improves efficiency on the area side. In addition, given the radar application environment that requires a variety of distance resolutions, FFT processors need to support variable-length operations. In this paper, the FFT processor and IFFT processor in multi-mode RSP range estimation are designed and proposed as hardware for a single FFT processor that supports variable length operation of 16-1024 points. The proposed FFT processor designed in hardware description language (HDL) and can be implemented with 7,452 logic elements and 5,116 registers.

Tx/Rx-ordering-aided efficient sphere decoding for generalized spatial modulation systems (일반화 공간 변조 시스템에서 송신/수신 순서화를 적용한 효율적 구복호 수신기)

  • Lee, Hyeong-yeong;Park, Young-woong;Kim, Jong-min;Moon, Hyun-woo;Lee, Kyungchun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.523-529
    • /
    • 2017
  • In this paper, we propose an efficient sphere decoding scheme that reduces computational complexity by combining receive and transmit ordering techniques in generalized spatial modulation systems, where the indexes of activated transmit antennas as well as the transmit symbols are exploited to transfer information to the receiver. In this scheme, the receive signals are optimally ordered so that the calculation for a candidate solution outside the sphere is terminated early to lower the computational complexity. In addition, the transmit ordering technique is applied to first search for candidate symbols and activated antennas having higher probabilities to further reduce the computational complexity. Simulation results show that the proposed doubly ordered sphere decoding scheme provides the same bit error rate performance with the conventional sphere decoding method and the sphere decoder employing only the receive ordering technique while it requires lower computational complexity.

A Small-area Hardware Implementation of EGML-based Moving Object Detection Processor (EGML 기반 이동객체 검출 프로세서의 저면적 하드웨어 구현)

  • Sung, Mi-ji;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2213-2220
    • /
    • 2017
  • This paper proposes an efficient approach for hardware implementation of moving object detection (MOD) processor using effective Gaussian mixture learning (EGML)-based background subtraction method. Arithmetic units used in background generation were implemented using LUT-based approximation to reduce hardware complexity. Hardware resources used for both background subtraction and Gaussian probability density calculation were shared. The MOD processor was verified by FPGA-in-the-loop simulation using MATLAB/Simulink. The MOD performance was evaluated by using six types of video defined in IEEE CDW-2014 dataset, which resulted the average of recall value of 0.7700, the average of precision value of 0.7170, and the average of F-measure value of 0.7293. The MOD processor was implemented with 882 slices and block RAM of $146{\times}36kbits$ on Virtex5 FPGA, resulting in 60% hardware reduction compared to conventional design based on EGML. It was estimated that the MOD processor could operate with 75 MHz clock, resulting in real-time processing of $800{\times}600$ video with a frame rate of 39 fps.

Research on improvement of target tracking performance of LM-IPDAF through improvement of clutter density estimation method (클러터밀도 추정 방법 개선을 통한 LM-IPDAF의 표적 추적 성능 향상 연구)

  • Yoo, In-Je;Park, Sung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.99-110
    • /
    • 2017
  • Improving tracking performance by estimating the status of multiple targets using radar is important. In a clutter environment, a joint event occurs between the track and measurement in multiple target tracking using a tracking filter. As the number increases, the joint event increases exponentially. The problem to be considered when multiple target tracking filter design in such environments is that first, the tracking filter minimizes the rate of false track alarmsby eliminating the false track and quickly confirming the target track. The purpose is to increase the FTD performance. The second consideration is to improve the track maintenance performance by allocating each measurement to a track efficiently when an event occurs. Through two considerations, a single target tracking data association technique is extended to a multiple target tracking filter, and representative algorithms are JIPDAF and LM-IPDAF. In this study, a probabilistic evaluation of many hypotheses in the assignment of measurements was not performed, so that the computation amount does not increase nonlinearly according to the number of measurements and tracks, and the track existence probability based on the track density The LM-IPDAF algorithm was introduced. This paper also proposes a method to reduce the computational complexity by improving the clutter density estimation method for calculating the track existence probability of LM-IPDAF. The performance was verified by a comparison with the existing algorithm through simulation. As a result, it was possible to reduce the simulation processing time by approximately 20% while achieving equivalent performance on the position RMSE and Confirmed True Track.

A Tree-structured XPath Query Reduction Scheme for Enhancing XML Query Processing Performance (XML 질의의 수행성능 향상을 위한 트리 구조 XPath 질의의 축약 기법에 관한 연구)

  • Lee, Min-Soo;Kim, Yun-Mi;Song, Soo-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.585-596
    • /
    • 2007
  • XML data generally consists of a hierarchical tree-structure which is reflected in mechanisms to store and retrieve XML data. Therefore, when storing XML data in the database, the hierarchical relationships among the XML elements are taken into consideration during the restructuring and storing of the XML data. Also, in order to support the search queries from the user, a mechanism is needed to compute the hierarchical relationship between the element structures specified by the query. The structural join operation is one solution to this problem, and is an efficient computation method for hierarchical relationships in an in database based on the node numbering scheme. However, in order to process a tree structured XML query which contains a complex nested hierarchical relationship it still needs to carry out multiple structural joins and results in another problem of having a high query execution cost. Therefore, in this paper we provide a preprocessing mechanism for effectively reducing the cost of multiple nested structural joins by applying the concept of equivalence classes and suggest a query path reduction algorithm to shorten the path query which consists of a regular expression. The mechanism is especially devised to reduce path queries containing branch nodes. The experimental results show that the proposed algorithm can reduce the time requited for processing the path queries to 1/3 of the original execution time.

Infrared-based User Location Tracking System for Indoor Environments (적외선 기반 실내 사용자 위치 추적 시스템)

  • Jung, Seok-Min;Jung, Woo-Jin;Woo, Woon-Tack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.9-20
    • /
    • 2005
  • In this paper, we propose ubiTrack, a system which tracks users' location in indoor environments by employing infrared-based proximity method. Most of recently developed systems have focussed on performance and accuracy. For this reason, they adopted the idea of centralized management, which gathers all information in a main system to monitor users' location. However, these systems raise privacy concerns in ubiquitous computing environments where tons of sensors are seamlessly embedded into environments. In addition, centralized systems also need high computational power to support multiple users. The proposed ubiTrack is designed as a passive mobile architecture to relax privacy problems. Moreover, ubiTrack utilizes appropriate area as a unit to efficiently track users. To achieve this, ubiTrack overlaps each sensing area by utilizing the TDM (Time-Division Multiplexing) method. Additionally, ubiTrack exploits various filtering methods at each receiver and utilization module. The filtering methods minimize unexpected noise effect caused by external shock or intensity weakness of ID signal at the boundary of sensing area. ubiTrack can be applied not only to location-based applications but also to context-aware applications because of its associated module. This module is a part of middleware to support communication between heterogeneous applications or sensors in ubiquitous computing environments.

A Proactive Secret Image Sharing Scheme over GF(28) (유한 체상에서의 사전 비밀이미지 공유 기법)

  • Hyun, Suhng-Ill;Shin, Sang-Ho;Yoo, Kee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.577-590
    • /
    • 2013
  • Shamir's (k,n)-threshold secret sharing scheme is not secure against cheating by attacker because the signature of participants is omitted. To prevent cheating, many schemes have been proposed, and a proactive secret sharing is one of those. The proactive secret sharing is a method to update shares in the secret sharing scheme at irregular intervals. In this paper, a proactive image secret sharing scheme over $GF(2^8)$ is proposed for the first time. For the past 30 years, Galois field operation is widely used in order to perform the efficient and secure bit operation in cryptography, and the proposed scheme with update phase of shadow image over $GF(2^8)$) at irregular intervals provides the lossless and non-compromising of secret image. To evaluate security and efficiency of images (i.e. cover and shadow images) distortion between the proposed scheme and the previous schemes, embedding capacity and PSNR are compared in experiments. The experimental results show that the performances of the embedding capacity and image distortion ratio of the proposed scheme are superior to the previous schemes.

A selective sparse coding based fast super-resolution method for a side-scan sonar image (선택적 sparse coding 기반 측면주사 소나 영상의 고속 초해상도 복원 알고리즘)

  • Park, Jaihyun;Yang, Cheoljong;Ku, Bonwha;Lee, Seungho;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • Efforts have been made to reconstruct low-resolution underwater images to high-resolution ones by using the image SR (Super-Resolution) method, all to improve efficiency when acquiring side-scan sonar images. As side-scan sonar images are similar with the optical images with respect to exploiting 2-dimensional signals, conventional image restoration methods for optical images can be considered as a solution. One of the most typical super-resolution methods for optical image is a sparse coding and there are studies for verifying applicability of sparse coding method for underwater images by analyzing sparsity of underwater images. Sparse coding is a method that obtains recovered signal from input signal by linear combination of dictionary and sparse coefficients. However, it requires huge computational load to accurately estimate sparse coefficients. In this study, a sparse coding based underwater image super-resolution method is applied while a selective reconstruction method for object region is suggested to reduce the processing time. For this method, this paper proposes an edge detection and object and non object region classification method for underwater images and combine it with sparse coding based image super-resolution method. Effectiveness of the proposed method is verified by reducing the processing time for image reconstruction over 32 % while preserving same level of PSNR (Peak Signal-to-Noise Ratio) compared with conventional method.

A MapReduce-based kNN Join Query Processing Algorithm for Analyzing Large-scale Data (대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘)

  • Lee, HyunJo;Kim, TaeHoon;Chang, JaeWoo
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.504-511
    • /
    • 2015
  • Recently, the amount of data is rapidly increasing with the popularity of the SNS and the development of mobile technology. So, it has been actively studied for the effective data analysis schemes of the large amounts of data. One of the typical schemes is a Voronoi diagram based on kNN join algorithm (VkNN-join) using MapReduce. For two datasets R and S, VkNN-join can reduce the time of the join query processing involving big data because it selects the corresponding subset Sj for each Ri and processes the query with them. However, VkNN-join requires a high computational cost for constructing the Voronoi diagram. Moreover, the computational overhead of the VkNN-join is high because the number of the candidate cells increases as the value of the k increases. In order to solve these problems, we propose a MapReduce-based kNN-join query processing algorithm for analyzing the large amounts of data. Using the seed-based dynamic partitioning, our algorithm can reduce the overhead for constructing the index structure. Also, it can reduce the computational overhead to find the candidate partitions by selecting corresponding partitions with the average distance between two seeds. We show that our algorithm has better performance than the existing scheme in terms of the query processing time.