• 제목/요약/키워드: 연산 결과의 의미 이해

검색결과 32건 처리시간 0.026초

연산 결과의 의미 이해를 돕기 위한 단위 사용에서의 교수학적 변환 연구 (Didactic Transposition about Unit Usage to Help Recognize Meaning of Calculation Results)

  • 강정기;정상태;노은환
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제17권3호
    • /
    • pp.231-251
    • /
    • 2014
  • 수치와 단위는 서로 동떨어진 것이 아니며, 단위는 수치의 의미를 명확히 하는 역할을 한다. 학생들이 해결해야하는 많은 문제에는 단위가 포함되는데, 문제해결 과정에서 관찰된 학생들은 연산 결과의 의미 이해에 어려움을 겪고 있었다. 이러한 현상의 현황을 확인하기 위해 초등학교 6학년 2개반 52명을 대상으로 검사지를 투입하여 그 실태를 파악하여 분석하였는데, 이들에게도 역시 단위는문제에 주어져 있는 것일 뿐, 단위를 연산의 의미 이해와 연결 짓지 못하였다. 이 연구에서는 이와 같은 결과를 토대로 기존의 교수학적 변환이 갖는 특징과 한계를 살펴보고, 연산 결과의 의미 이해 측면에서 단위가 갖는 이점을 고찰해 봄으로써 상황과 관련한 해석에 있어 단위가 갖는 효력을 구체화하였다. 특히 단위 연산 가능성을 허용한 교수학적 변환에 대한 구체적 논의와 시사점을 제안함으로써, 교수 학습에서 변화의 불가피성을 강조함과 동시에 실질적 도움을 제공하고자 하였다.

십진블록을 활용한 소수의 곱셈 지도에서 초등학교 5학년 학생들의 개념적 이해 과정 분석 (An Analysis on the Process of Conceptual Understanding of Fifth Grade Elementary School Students about the Multiplication of Decimal with Base-Ten Blocks)

  • 김수정;방정숙
    • 한국초등수학교육학회지
    • /
    • 제11권1호
    • /
    • pp.1-21
    • /
    • 2007
  • 본 연구는 초등학교 5학년 학생들에게 십진블록을 활용하여 소수의 곱셈을 지도하는 과정에서 학생들의 개념적 이해 과정을 면밀히 분석함으로써 십진블록을 활용한 소수의 곱셈 지도 과정에 대한 시사점을 제공하는데 그 목적이 있다. 십진블록을 활용한 소수의 곱셈 지도에서 초등학교 5학년 학생들은 주어진 문제에서 각 연산의 의미를 개념적으로 이해하고 해석하였으며 그 의미에 따라 십진블록으로 모델링하여 계산하였다. 학생들은 십진블록을 이용한 계산 과정을 통해 알고리즘을 발견하고 알고리즘의 각 단계를 십진블록과 연결하여 설명함으로써 계산 원리를 개념적으로 이해하였다 또한 소수의 곱셈 계산 결과가 올바른지 판단하고 그 이유를 십진블록으로 설명함으로써 소수의 곱셈 계산 결과를 각 연산의 의미와 연결하여 개념적으로 이해하였다. 이런 측면에서 본 연구는 십진블록을 활용한 소수의 곱셈 지도가 초등학교 5학년 학생들의 소수의 곱셈에 대한 개념적 이해를 도울 수 있는 한 방안이 됨을 시사한다.

  • PDF

분수의 덧셈과 뺄셈에 대한 아동의 이해 분석 (The Analysis of Children's Understanding of Addition and Subtraction of Fractions)

  • 김경미;황우형
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제23권3호
    • /
    • pp.707-734
    • /
    • 2009
  • 본 연구에서는 초등학교 4, 5, 6학년 20명을 대상으로 분수의 덧셈과 뺄셈에 대하여 아동이 어떻게 이해하고 있는지 알아보고, 그것이 분수의 덧셈과 뺄셈 문장제 해결에 어떤 영향을 주는지 알아보았다. 연구 결과 많은 아동들이 분수의 덧셈을 합병의 상황으로, 분수의 뺄셈을 제거의 상황으로 이해하고 있었으며, 대부분 동분모 분수의 덧셈, 뺄셈과 이분모 분수의 덧셈, 뺄셈을 동일한 의미로 이해하고 있었다. 몇몇 아동들은 분수의 덧셈과 뺄셈을 특정 상황과 연결 지어 이해하고 있기 보다는 연산의 계산 절차를 연산의 의미로 이해하고 있었는데, 동분모 분수의 덧셈, 뺄셈보다 이분모 분수의 덧셈, 뺄셈을 계산절차로만 이해하고 있는 아동들이 상대적으로 많았다. 분수의 덧셈과 뺄셈에 대한 아동의 이해가 문장제 해결에 어떤 영향을 주는지 조사한 결과 분수의 덧셈에 대하여 아동이 어떤 의미로 이해하고 있느냐는 분수의 덧셈 문장제 해결에 큰 영향을 주지 않았다. 또한 분수의 덧셈에 대하여 동일한 이해 범주에 포함된 아동들 간에도 문장제의 해결 방법에 공통된 특성은 발견되지 않았다. 반면, 분수의 뺄셈에서는 많은 아동이 분수의 뺄셈에 대하여 자신이 지니고 있는 의미론적 구조에 기초하여 문제를 해결하려는 경향을 보였으며, 동일한 이해 범주에 포함된 아동들 간에도 분수의 뺄셈 문장제 해결 방법에 공통된 특성이 발견되었다. 특히 분수의 덧셈과 뺄셈을 특정 상황과 연관 지어 이해하고 있기 보다는 분수의 덧셈과 뺄셈의 계산 절차를 각 연산의 의미로 이해하고 있었던 아동들은 다른 아동들에 비해 문장제 해결 능력이 떨어졌다.

  • PDF

십진블록을 활용한 소수의 나눗셈 지도에서 초등학교 5학년 학생들의 개념적 이해 과정 분석 (An Analysis on the Process of Conceptual Understanding of Fifth Grade Elementary School Students about the Division of Decimal with Base-Ten Blocks)

  • 방정숙;김수정
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제17권3호
    • /
    • pp.233-251
    • /
    • 2007
  • 본 연구는 주로 알고리즘 위주로 학습되는 소수의 나눗셈 지도에 반하여 십진블록을 활용하여 초등학교 5학년 학생들이 소수의 나눗셈을 보다 의미 있게 학습할 수 있는지를 면밀하게 탐색하였다. 연구결과 학생들은 다양한 소수의 나눗셈 문제를 십진블록으로 모델링하여 계산하는 과정을 통해 연산의 의미를 개념적으로 이해할 수 있었고, 알고리즘의 각 단계를 십진블록의 조작활동과 연결하여 설명함으로써 계산 원리를 터득할 수 있었다. 또한 소수의 나눗셈 계산 결과를 연산의 의미와 연결하여 개념적으로 설명할 수 있었다. 이를 통하여 본 연구는 구체적인 수업 사례를 바탕으로 소수 나눗셈 지도 방안에 대한 시사점을 제공한다.

  • PDF

초등학교 수학에서 같음과 등호의 의미에 대한 고찰 (Some Remarks on the Sameness and the Meaning of the Equal Sign in Elementary School Mathematics Textbooks)

  • 백대현
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제23권1호
    • /
    • pp.45-61
    • /
    • 2020
  • 초등학교 수학에서는 '같음'을 명시적으로 다루지 않고 등호를 읽는 방법으로 제시한다. 등호의 의미는 크게 연산적인 관점과 관계적인 관점으로 구분된다. 그러나 대부분의 초등학교 학생들은 등호를 연산의 결과로 구한 답을 적으라는 연산적인 의미로 이해한다. 중학교 수학에서 요구되는 대수적 사고를 하기 위해서는 등호의 관계적인 의미에 대한 이해가 바탕이 되어야 한다. 최근에는 초등학교 수학에서 다루는 산술에서부터 등호의 관계적인 의미를 강조한다. 따라서 초등학교 수학에서 학생들이 등호의 관계적인 의미를 경험할 수 있는 활동을 의도적으로 제시할 필요가 있다. 본 연구에서는 초등학교 수학에서 사용되는 같음과 등호의 의미와 등호가 사용된 맥락을 분석하고, 이를 바탕으로 같음과 등호의 관계적인 의미를 강조할 수 있는 방안을 논의하고자 한다.

행렬의 연산을 통해 본 일대일 대응의 의미에 관한 고찰 (A Study on Meaning of One-to-One Correspondence through the Operation of Matrix)

  • 정영우;김부윤;황종철;김소영
    • 대한수학교육학회지:학교수학
    • /
    • 제13권3호
    • /
    • pp.405-422
    • /
    • 2011
  • 본 연구는 행렬 연산지도의 실태를 분석하여 행렬 연산에 관한 이해의 필요성을 제시한 후, 행렬의 연산이 정의되는 이론적 배경의 탐구를 통하여 일대일 대응의 의의에 대해 고찰한다. 대수적 관점에서의 일대일 대응의 의의는 '이미 구조를 알고 있는 집합에서 일대일 대응을 통하여 새로운 집합에 대수적 체계를 도입할 수 있게 하는 수단'이라는 것이다. 즉, 동형구조를 만드는데 있어 핵심 아이디어라는 것이다. 행렬의 연산을 예로 한 일대일 대응에 관한 이러한 고찰과정은 수학적 사실의 필연성 및 개연성을 경험하게 하여, 그러한 수학적 아이디어들이 단순히 주어지는 것이 아니라, 특정의 목적성 있는 활동의 결과물임을 인식하게 한다. 또한 일대일 대응의 본질적 이해는 행렬에 대한 논의에 그치지 않고 지수법칙, 대칭차집합, 순열 등 다양한 수학적 지식을 전개하기 위한 기저가 된다. 이러한 연구의 목적은 교사와 학생들에게 수학적 개념의 의미 충실한 이해를 돕는데 있으며, 나아가 교사의 가르칠 지식에의 전문성을 높이는데 있다.

  • PDF

소수연산에 관한 예비초등교사의 교수내용지식 분석 (An Analysis of Pre-service Teachers' Pedagogical Content Knowledge about Decimal Calculation)

  • 송근영;방정숙
    • 한국초등수학교육학회지
    • /
    • 제12권1호
    • /
    • pp.1-25
    • /
    • 2008
  • 최근 더욱 강조되는 교사의 교수 내용 지식과 관련하여 분수에 관한 연구는 상대적으로 많으나 소수와 관련된 연구는 매우 드물다. 초등수학교육에서 소수가 차지하는 양과 개념적 중요성을 생각해볼 때, 이에 대한 연구가 시급하다. 이에 본 연구는 예비초등교사의 소수연산에 관한 수학 내용 지식, 학생 이해 지식, 교수 방법 지식을 살펴보았다. 분석 결과, 예비교사들은 교과서에 제시된 연산 방법에 관해서는 잘 이해하고 있었으나 승수나 제수가 소수인 경우 연산의 의미는 잘 이해하지 못했다. 학생들의 오류에 대해서는 자연수 관련 오류에 비해 소수점 관련 오류, 분수 관련 오류를 잘 이해하지 못하였다. 교수 방법에 대해서는 알고리즘에 관한 설명이 가장 많았으며, 응답 중 '자연수 연산과 비슷하게 계산하되 소수점에 유의한다.'와 같은 반응이 많아 학생들의 자연수 관련 오류의 원인이 될 가능성을 보였다. 이런 측면에서 본 연구는 예비초등교사교육에서 초등학생들의 오류 유형 및 원인에 대해 더 민감하게 배우고 단순한 알고리즘 이외의 다양한 교수법에 대해서 학습할 기회가 필요하다는 점을 강조한다.

  • PDF

순열 조합 문장제의 문제 변인과 오류 분석 (Analysis of Variables and Errors of the Combinatorial Problem)

  • 이지현;이정연;최영기
    • 대한수학교육학회지:학교수학
    • /
    • 제7권2호
    • /
    • pp.123-137
    • /
    • 2005
  • 순열 조합의 문제는 내재된 의미 구조에 의해 선택, 분배, 분할의 세 가지의 유형으로 분류될 수 있다. 본 연구에서는 순열 조합의 연산과 문제 유형의 변인이 문제의 난이도에 미치는 영향을 분석하였다 그리고 문제 이해과정에서의 오류를 순서, 중복, 대상의 구별, 같은 것이 있는 순열, 상자의 구별, 분할의 조건, 기타로 분류하고 이해 단계의 장애를 구체적으로 분석하였다. 연구 결과, 순열 조합 연산과 문제의 유형은 난이도에 유의미한 영향을 미치는 것으로 나타났다. 특히 학생들에게 선택, 분할, 분배 문제간의 변환은 쉽지 않으며 순열 조합의 문제에서 학생들이 겪는 어려움 중 하나는 바로 문제 유형의 차이에서 비롯된다는 것을 알 수 있었다. 또한 현 교과서에서는 선택, 분배, 분할을 고려한 다양한 문제 유형이 부족한 것으로 나타났다. 따라서 순열 조합의 지도에 있어 문제 유형을 활용하여 다양한 의미 구조의 문제를 제시하고, 공식위주가 아닌 문제 상황을 충분히 이해하고 이에 대한 해법을 변형, 확장하는 경험을 강조하는 것이 필요하다고 하겠다.

  • PDF

곱셈의 연산 성질을 강조한 초등 수학 수업에 따른 3학년 학생들의 이해 분석 (An Analysis of Third Graders' Understanding of the Properties of Multiplication by Elementary Mathematics Instruction)

  • 선우진;방정숙
    • 한국초등수학교육학회지
    • /
    • 제23권1호
    • /
    • pp.143-168
    • /
    • 2019
  • 초등학교 수학에서 최근 대수적 사고의 중요성과 함께 수와 연산의 성질을 암묵적으로 다루기보다 그 자체로 의미 있게 탐구해야 한다는 필요성이 부각되어 왔다. 이러한 필요성을 바탕으로, 본 연구는 초등학교 3학년 학생들을 대상으로 곱셈 단원을 재구성하여 연산의 성질을 지도한 후, 이에 대한 학생들의 이해가 어떻게 신장되었는지 분석하는 데 초점을 두었다. 이를 위하여 3개의 학급 학생들이 본 연구에 참여하였으며, 곱셈의 연산 성질에 대한 사전·사후 검사를 실시하여 그 결과를 분석하였다. 연구 결과, 학생들은 대체로 곱셈의 결합법칙, 교환법칙, 분배법칙을 (두 자리 수)×(한 자리 수)의 맥락에서 적용하는 문항, (두 자리 수)×(두 자리 수)의 맥락에서도 연산 성질이 적용되는지 추론하는 문항에서 정답률이 향상되었으며, 일부 학생들은 연산 성질에 대해 일반화해서 설명하는 능력이 신장되었다. 이러한 결과를 토대로 초등학교 수학에서 연산 성질을 지도하는 방안과 관련한 시사점을 논의하였다.

  • PDF

포함제와 등분제에 따른 나눗셈 의미에 대한 이해 조사 (Investigation on Awareness of Meanings of Division: Quotitive Division and Partitive Division)

  • 장혜원
    • 대한수학교육학회지:학교수학
    • /
    • 제12권4호
    • /
    • pp.585-604
    • /
    • 2010
  • 본 연구에서는 나눗셈의 도입시 이용되는 두 가지 의미인 포함제와 등분제에 대한 초등학생 및 예비초등교사의 이해에 대해 조사하였다. 역대 교육과정 및 그에 따른 교과서에서 나눗셈을 도입하는 상황으로 양자를 다루어왔지만 그 구별을 어느 정도로 명시적으로 다루었는가 하는 것은 시기에 따라 변화되어 왔다. 특히 현행 2007년 개정교육과정에 따른 교과서에서는 두 가지 의미에 따라 나눗셈을 별도로 정의하고 몫의 의미에 대해서도 명시적인 언어적 설명을 추가하는 등 이전과 다른 특징을 보여준다. 계산 기능뿐만 아니라 연산의 의미 이해를 강조하는 수학교육 경향의 한 단면으로 간주되는 이러한 의도가 학생들에게 얼마만큼 수용되고 있는지 알아보기 위해 초등학교 3학년 학생을 대상으로 질문지를 적용하여 그 결과를 분석하고, 또한 두 상황의 명시적인 구별 가능성을 타진하기 위한 기초 자료로서 예비초등교사의 이해도를 조사하였다. 결과적으로 현행 교과서의 접근 방식에 대한 재고의 필요성을 확인하고, 나눗셈의 지도를 위한 몇 가지 교수학적 시사점을 도출하였다.

  • PDF