• Title/Summary/Keyword: 연료 분사기

Search Result 302, Processing Time 0.028 seconds

The Characteristics of Mixing and Combustion in the Combustor with Turbulence Generator (난류발생기가 장착된 선회기를 이용한 연소기내의 혼합 및 연소 특성)

  • 류승협;서정무;박용국;이근선;문수연;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.83-93
    • /
    • 2001
  • A swirler with turbulence generator is designed and manufactured for generating many small-scale eddies in the combustor which contribute to enhancing mixing effect between fuel and air. The method results in not only the disadvantage of pressure loss but also the advantage of promoting combustion and reducing NOx. For the purpose of the study, four kinds of swirler with different turbulence generator area (0%, 3%, 7%, and 12% of reducing flow area) are designed to confirm the effect of mixing according the variation in the area of the turbulence generator. The mixing of combustor in the radial direction is significantly improved and the distributions of flames and temperature are well distributed throughout the cross section of a combustor as area of swirl generator is increased.

  • PDF

DME 분과 발표회-(DME 연료실증.시험연구 기술개발)

  • Korea LPGas Industry Association
    • LP가스
    • /
    • v.20 no.2
    • /
    • pp.59-67
    • /
    • 2008
  • 지난 4월 2일 GAS KOREA 2008 전시회가 개최된 서울무역전시장에서 '한국DME협회 분과발표회'가 열렸다. 이날 분과발표회에서는 'DME Demo 플랜트 현황소개(한국가스공사 연구 개발원 조원준 박사 "DME 연료실증, 시험연구 사업현황(한국가스공사 연구개발원 백영순 박사)" 커먼레일형 연료공급계를 탑재한 2리터급 DME 차량개발(자동차 부품연구원 정재우 박사) "급속압축장치를 이용한 불균일 예혼합기의 DME HCCI연소 과정에 관한 연구(울산대학교 임옥택 교수) DME의 자착화 측정 및 세탄가의 추정(인하대학교 이대엽교수)" 직접분사식 압축착화기관에서 DME연료의 분무미립화 및 배출물 특성(한양대학교 이창식 교수)' 에 대한 발표도 이뤄졌다.

  • PDF

Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector (가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

Reaction Characteristics of LPG Fuel and Rubber Parts of Fuel Supply System in Liquid Phase LPG Injection (LPLi) System (LPG액상분사식(LPLi) 엔진에서 연료와 연료공급계통 고무류 부품사이의 반응성 연구)

  • Kim, Chang-Up;Park, Cheol-Woong;Kang, Kern-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.272-277
    • /
    • 2009
  • The liquid phase LPG injection (LPLi) system (the 3rd generation technology) has been considered as one of the most promising fuel supply systems for LPG vehicles. To investigate the reaction characteristics of LPG with rubber parts in LPLi system, various rubbers were tested. The results showed that the amount of residue from the cover rubber of a fuel pump was increased about 10 times after testing. Furthermore, the amount of sulfur and nitrogen species which are considered as main sources of deposit formation in LPLi fuel injectors were also found to be higher than those in original LPG fuel. In addition, these residues made the core parts of LPLi injector such as needle and nozzle, partially worn, which eventually causes leakage in LPLi injectors.

Reaction Characteristics of LPG fuel in LPLi fuel supply system (LPLi연료시스템의 LPG연료 반응성 연구)

  • Kim, Chang-Up;Park, Cheol-Woong;Kang, Kern-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2904-2909
    • /
    • 2008
  • The liquid phase LPG injection (LPLi) system (the 3rd generation technology) has been considered as one of the more promising fuel supply systems for LPG vehicles. To investigate the characteristics of LPG residue in LPLi system, various rubbers were reacted with LPG fuels. The results showed that the residue of a cover rubber in a fuel pump after test increased 10 times higher than that before test. Furthermore, the amount of sulfur, nitrogen species which are considered as main sources in deposit formation in the LPLi fuel injector were also found to be higher than that in original LPG fuel. And these residues made the core parts of LPLi injector such as a neddle and a nozzle, partially worn, which eventually causes a leakage in LPLi injectors.

  • PDF

Hexane Vapor Concentration Measurement of a Liquid Jet in Crossflow (수직분사제트에서의 헥산 증기농도측정)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.383-389
    • /
    • 2010
  • The vapor concentration of hexane in a liquid spray jet in crossflow was qualitatively measured on the basis of the infrared (IR) extinction techniques. The objectives of the present study are to understand the whole evaporation process from droplet breakup to vapor and to confirm the usefulness of IR emission method in a lab-scale ramjet combustor. From the experimental results, we concluded that hexane vapor mole fraction increased with temperature rise and kept nearly constant during the variation of fuel to air momentum ratio.

  • PDF

Hexane Vapor Concentration Measurement of a Liquid Jet in Crossflow (수직분사제트에서의 헥산 증기농도측정)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.25-31
    • /
    • 2010
  • The vapor concentration of hexane in a liquid spray jet in crossflow was qualitatively measured on the basis of the infrared (IR) extinction techniques. The objectives of the present study are to understand the whole evaporation process from droplet breakup to vapor and to confirm the usefulness of IR emission method in a lab-scale ramjet combustor. From the experimental results, we concluded that hexane vapor mole fraction increased with temperature rise and kept nearly constant during the variation of fuel to air momentum ratio.

Hydrocarbon Speciation in Low Temperature Diesel Combustion (저온 디젤 연소에서 발생하는 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.417-422
    • /
    • 2010
  • Low temperature diesel combustion was achieved via a combination of late injection timing ($8.5^{\circ}$ CA BTDC to $0.5^{\circ}$ CA BTDC) and heavy exhaust gas recirculation (37% to 48%) with ultra low sulfur Swedish diesel fuel in a 1.7L common rail direct injection diesel engine. When injection timing is retarded at a certain exhaust gas recirculation rate, the particulate matter and nitrogen oxides decease simultaneously, while the hydrocarbon and carbon monoxide increase. Hydrocarbon speciation by gas chromatography using a flame ionization detector reveals that the ratio of partially burned hydrocarbon, i.e., mainly alkenes increase as the injection timing is retarded and exhaust gas recirculation is increased. The two most abundant hydrocarbon species are ethene which is a representative species of partially burned hydrocarbons, and n-undecane, which is a representative species of unburned hydrocarbons. They may be used as surrogate hydrocarbon species for performing a bench flow reactor test for catalyst development.

Study on the High Pressure Combustion Performance Characteristics of the 1st Row Pintle Injector using LOx-Kerosene as Propellant (LOx와 Kerosene을 추진제로 하는 1열 핀틀 분사기의 고압 연소성능 특성에 관한 연구)

  • Kang, Donghyuk;Kim, Jonggyu;Ryu, Chulsung;Ko, Youngsung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • The pintle injector has many advantages in the key characteristics of a liquid rocket engine, such as combustion stability, combustion efficiency, and wide range of comprehensive thrust control, design and manufacture, and test fired under supercritical conditions. The pintle injector is manufactured with a rectangular, single-row orifice for thrust control and production considerations. In order to verify the combustion performance of the pintle injector and its potential as a commercial injector, the combustion characteristics were analyzed by varying the TMR (Total Momentum Ratio) and BF (Blockage Factor). The result of the hot firing test showed that the heat flux increased as TMR increased, and it confirmed that the characteristic velocity efficiency was more affected by BF than TMR. Suppose a single-row pintle injector with efficiency characteristics insensitive to changes in TMR can achieve high efficiency at low fuel differential pressure conditions. In that case, the variable pintle injector's design flexibility can be increase.

A Study on the Correlation of Droplets Size and Velocity of the Pintle Type Gasoline Injector with Intermittent Injection (간헐적으로 분사되는 핀틀형 가솔린 분사기의 액적크기와 속도 상관관계에 관한 연구)

  • Kang, S.J.;Kim, W.T.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.34-42
    • /
    • 1998
  • The correlation between the droplets size and the velocity are investigated for an intermittent spray of the pintle type fuel injector employed in a port injection gasoline engine. The analysis such as the mean droplet size, SMD, and velocity under the fixed injection period and varied fuel pressures are conducted utilizing PDPA systems. As results, the experimental data obtained, show that the larger droplet sizes. the higher velocities during the spray tip arrival time, and that at Z=70mm, r=8mm, both droplet sizes and velocities are peak. At the upstream, flow of droplets are dominated by injection pressure, which are more effected inertia force of droplets at the downstream of Z=70mm.

  • PDF