• Title/Summary/Keyword: 연료혼입

Search Result 27, Processing Time 0.028 seconds

Failure Analysis and Heat-resistant Evaluation of Electric Fuel Pump for Combat Vehicle (전투차량용 전기식 연료펌프의 고장분석 및 내열성능 평가)

  • Kwak, Daehwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.634-640
    • /
    • 2020
  • Failure analysis and heat-resistant were performed for an electric fuel pump that is installed in the fuel tank to transfer fuel to the engine of combat vehicles. The fuel pump with a DC motor was disassembled and inspected to determine the cause of failure. The failure phenomenon was classified into three categories based on observations of the inside of the housing: burnt winding, quick brush abrasion, and fuel leak into the pump. Based on the inspection results, it was estimated that overheating was the main cause of failure. The thermal test was conducted under the no-load condition in 24 hours, and the thermal sensor was installed on the stator surface and the brush holder to check the possibility of damage to the winding due to overheating. When the ambient temperature of the fuel pump was set to 68 ℃, the stator temperature increased to 135.9 ℃, and the winding of the motor was almost damaged. The test results confirmed the lack of heat resistance of fuel pump windings, and suggested that the type F of insulation class (below 155 ℃) of the windings and varnish should be replaced with type C or higher that can be used above 180 ℃.

Properties of Cold Recycled Asphalt Mixtures with Alkali-activated Filler according to Wasted Asphalt Aggregate Content (폐아스콘 순환골재 혼입율에 따른 알칼리활성화 채움재 상온 재생 아스팔트 혼합물의 특성)

  • Lee, Min-Hi;Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.199-206
    • /
    • 2018
  • Due to the advantages of less raw materials and fossil fuel consumption, lower carbon footprint, and the capability of pavement performance improvement, the recycling technology of asphalt is developed and applied for road rehabilitation and construction in the western countries over the past two decades. Cold recycled asphalt mixtures are bituminous materials normally made by mixing recycled aggregate from wasted asphalt with an asphalt emulsion and water at room temperature. This paper aims at investigating the properties of cold recycled asphalt mixture with alkali-activated filler according to wasted asphalt aggregate content. As a result, as the content of wasted asphalt aggregate increased, the marshall stability of cold recycled asphalt mixture decreased and void ratio increased. Also, grading curves for cold recycled asphalt mixture as specified in GR criteria were satisfied in all aggregate mixing conditions regardless of the wasted asphalt aggregate content.

Estimation of Carbon Emissions Reductions by the Penetration Rates of Autonomous Vehicles for Urban Road Network (자율주행 자동차 도입 수준에 따른 도시부 도로 탄소배출량 감소효과 추정)

  • Lee, Hyeok Jun;Park, Jong Han;Ko, Joonho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.162-176
    • /
    • 2021
  • Recently, Autonomous Vehicle(AV) has been expected to solve various transportation problems. s the problem of environmental pollution become serious, research to reduce pollution is needed. However, empirical research on AV related pollution is insufficient. Based on this background, this study analyzed network performance changes and CO2 emissions introduc AVs and Electric Vehicles(EV) in eight intersections. The results show that when AVs with internal combustion engines were, the effect of carbon reduction over the network was insignificant. On the other hand, it was that the total amount of CO2 generated in the network decreased significantly when EVs and autonomous electric vehicles were emissions in the transportation sector.

A Study on Types and Reasons of Engine Troubles Related to Fuel Oil (연료유에 의한 선박 디젤엔진 손상에 관한 연구)

  • Na, Eun-Young;Baik, Shin-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2009
  • Fuel oil mostly used for a ship is made from crude oil by refining process. In order to produce plenty of high-quality fuel oil, the Fluid catalytic cracking(FCC) method is widely adopted to many refinery factories during the decomposition process from high molecule into lower molecule. The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The big problem in FCC oil is mixing the catalyst in the oil. This reason is unstable separation of FCC catalyst in separator. Such a FCC catalyst will become a reason of heavy wear down in moving parts of engine. The impurity in oil is ash and deposit compound, such as Al, Si, Ni, Fe and V, which will accelerate the wear down on fuel pump, fuel injection valve cylinder liner and piston ring. It is important to find a basic reason of an engine trouble for preventing similar troubles anymore. Insurance compensation will be different according to the reason of an engine trouble which might be natural abrasion or other external causes. In this study, types and reasons of engine troubles related to fuel oil will be covered.

  • PDF

Study on the Correlation between Quality of Cement and Amount of Alternative Fuels used in Clinker Sintering Process (시멘트 클링커 소성공정 대체연료 사용량과 시멘트 품질간 상관관계 연구)

  • Choi, Jaewon;Koo, Kyung-Mo;You, Byeong-Know;Cha, Wan-Ho;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • In this study, the correlation between cement quality(chemical composition, mineral composition, and compressive strength) and amount of waste alternative fuels used in the cement manufacturing process and was investigated. Cement manufacturing facility using coal, soft plastics(plastics that are easily scattered by wind power, such as vinyls), hard plastics(plastics that do not contain foreign substances, waste rubber, PP, etc.) and reclaimed oil was analised. Data was collected for 3 years from 2017 to 2019 and let the amount of fuels used as an independent variable and cement quality data as a dependent variable. As a result, depending on the type and quality of the alternative fuel has not a significant effect on the chemical composition(Cl and LSF) and mineral composition(f-CaO, C3S contents). Contrary to the concern that the compressive strength of cement would decrease, there was a significant positive correlation between amount of alternative fuel used and cement compressive strength.

Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas (배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발)

  • EUNJU SHIN;YOUNG BAE KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

Separation Characteristic and Recycling of Excavated Materials Containing Waste (폐기물혼입굴착물의 선별특성과 재활용성 평가)

  • Lee, Suyoung;Kim, Kyuyeon;Jeon, Taewan;Shin, Sunkyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.5-12
    • /
    • 2019
  • The study is carried out to survey the proper management and to propose an eco - friendly separation system through efficient screening and resource recovery of excavated materials containing waste from various excavating fields such as reconstruction of landfill sites for reuse, reclamation of unsanitary landfill and residential land development of waste dumping sites. The current status and screening process and analytical characteristics of the excavated materials containing waste were reviewed. Through the analysis of the samples such as separated combustibles, recyclable soils and residues collected from the on-site visits we were able to understand the characteristics of separated materials and excavated materials containing waste such as calorific value, elementary composition, TOC, foreign material content and LOI. It has been found that elimination of the moisture of excavations, removal of attached soil from the surfaces of the excavated combustibles and the quantitative supply method of the input devices are the main operating factors as essential factors for the optimal separation of excavated materials containing waste. For efficient management and recycling of excavated materials containing, it is necessary to set criteria of ash content in separated combustibles and criteria organic matter content in separated soils.

Spray and Combustion Characteristics of Biodiesel-Ethanol Blending Fuel (바이오디젤-에탄올 혼입연료의 분무 및 연소특성)

  • Eom, Dong-Seop;Choi, Yeon-Soo;Choi, Yong-Seok;Lee, Seang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber by obtaining some fundamental data in order to improve combustion atmosphere. To understand the physics of combustion, high speed camera was applied to visualize the development of combustion processes, and combustion pressure and exhaust emission were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

Properties of Mortar mixed with Lignocellulosic Combustion By-products (목질계 연소부산물 혼입 모르타르 물성 평가)

  • Jeong, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.77-78
    • /
    • 2023
  • This paper experimentally examined the recycling of combustion by-products emitted from a combined heat and power plant using lignocellulosic biomass fuel. Physical and chemical analyzes were performed on Bio-SRF and three types of wood pellet combustion by-product samples (fly-ash, FA). As a result of the experiment, the compressive strength of mortar substituted with 5, 10, and 20% of FA compared to the cement weight was found to be excellent, and its recyclability was confirmed as a substitute for existing admixtures.

  • PDF

Experimental Study on the Influence of Superplasticizer on the Early Hydration Properties of Cement Paste Containing Micro-POFA (감수제의 사용이 micro-POFA 혼입 시멘트 페이스트의 초기 수화 특성에 미치는 영향에 관한 실험적 연구)

  • Wi, Kwangwoo;Lee, Han-Seung;Lim, Seungmin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.269-279
    • /
    • 2021
  • Palm Oil Fuel Ash(POFA) has been widely used to replace Portland cement to enhance the mechanical properties and durability of concrete. However, it reduces the workability of concrete due to the high content of unburnt carbon and its angular shape requiring the usage of superplasticizer to ensure a proper flowability. In this study, effects of different types and dosage of superplasticizer on the early mechanical and hydration properties of cement paste containing micro-POFA were evaluated using mini-slump test, early compressive strength, TGA, XRD, and SEM. The results indicated that the flowability of cement paste containing micro-POFA reduced as the replacement ratio of micro-POFA increased. As the dosage of superplasticizer increased, the flowability was also increased. In addition, the usage of superplasticizer reduced the early compressive strength, and the strength decreased with an increase in the dosage of superplasticizer. It was confirmed that superplasticizer hindered the formation of C-S-H leading to a relative increase in the formation of Ca(OH)2.