• Title/Summary/Keyword: 연료적 특성

Search Result 1,788, Processing Time 0.028 seconds

An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel (바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구)

  • Kim, HyunJun;Lee, HoKil;Oh, SeDoo;Kim, Shin
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

Predicting the Mass Burning Flux of Methanol Pool Fires by Using FDS Model (FDS 모델을 이용한 메탄올 풀 화재의 질량연소플럭스 예측)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.12-18
    • /
    • 2017
  • The present study has been conducted to predict the mass burning flux of methanol pool fire using liquid vaporization model in FDS and examine the effect of thermal properties of liquid fuel such as radiative fraction and mean absorption coefficient. A series of calculation for the pool diameter of 5 cm to 200 cm were performed and the size of computational domain was determined by the scale of the pool diameter. The reference grid size was determined by the grid sensitivity analysis and the computational grids consisted of approximately 750,000 cells. For the methanol pool fire, the mass burning flux predicted by liquid vaporization model of FDS followed the trend of transient characteristics as a function of pool diameter and showed good agreement within measurement uncertainty range of previous studies. The mass burning flux increased with increasing the radiative fraction and the mean absorption coefficient greatly affected on relatively small pool diameter.

Design Point Operating Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 설계점 운영 특성)

  • Moon, Ilyoon;Moon, Insang;Kang, Sang Hun;Ha, Seong-Up;Lee, Soo Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2013
  • It was designed and tested at the design point that an oxidizer rich preburner for a staged combustion liquid rocket engine propelled by kerosene and LOx. The oxidizer rich preburner was designed as some of LOx injected from the mixing head was burned with kerosene and the rest of LOx injected from injection holes in the regenerative cooling chamber was vaporized by combustion gas. The preburner is operated at OF ratio of 60 and combustion pressure of 20 MPa. The Preburner has a honey-comb type mixing head with simplex swirl injectors, a turbulence ring improving combustion stability and uniformity of product gas temperature distribution, and a nozzle simulating the duct. With the combustion test results at the design point, the oxidizer rich preburner showed high combustion stability and uniformity of product gas temperature distribution.

Development of wind power simulator using MATLAB SIMULINK (MATLAB_SIMULINK를 이용한 풍력 발전 시뮬레이터 개발)

  • Park, won-hyeon;Gebreslassie, Mihret;Park, Ji-Hyeon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.665-667
    • /
    • 2016
  • Due to the depletion of fossil fuels and the environmental problems of recent years it has been increasing every year the interest in renewable energy. Renewable energy is clean and the typical method using solar and wind power and solar power as an energy source reusable. Wind power generation system of which it is a method of using the natural wind, convert the kinetic energy of the wind into electrical energy. Traditionally, implementing a wind power system, wind tunnel tests was to configure an environment similar to a real wind tunnel experiments. However, it costs a lot of money problems hagieneun configure these wind tunnel tests. Therefore, by this paper, in consideration of the fact, the characteristics of the generator in the wind tunnel experiment to experiment with such a wind tunnel test using a bad test by configuring the motor and controls the motor generator to obtain a result similar to the wind tunnel experiment.

  • PDF

Processing of Low Tin Zr-1Nb-0.69Sn-0.11Fe Alloy Tubes and Effect of Final Heat Treatment on Their Mechanical and Corrosion Properties (저 Sn 함유 Zr-Nb-Sn-Fe 합금 튜브 제조 및 최종 열처리 온도에 따른 기계적/부식특성 변화)

  • Cho, Nam Chan;Lee, Jong Min;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • To investigate the relationship between heat treatment in zirconium alloy tubing process and metallurgical characteristics of Zr-1Nb-0.69Sn-0.11Fe alloy tubes, mechanical and oxidation behaviors of tubes heat treated at different temperatures after the final pilgering were investigated. The stress strain curves exhibited the saturation behaviors in all heat treatment conditions ($460{\sim}600^{\circ}C$) in this study with the onset strain of saturation increased with increase of post-pilgering annealing temperature. The strength fell off rapidly with increasing annealing temperature. The ultimate strength of the low tin Zr-1Nb-0.69Sn-0.11Fe alloy with slightly higher iron and oxygen contents in this study was found to be higher than Zr-1Nb-1Sn-0.1Fe alloy. The oxidation experiments in steam condition revealed that the corrosion resistance of low tin Zr-1Nb-0.69Sn-0.11Fe alloy was better than the Zr-1Nb-1Sn-0.1Fe alloy with a higher Sn content. The weight gain of low tin Zr-1Nb-0.69Sn-0.11Fe alloy tubes gradually increased with the increasing annealing temperature possibly due to the decreased Nb content in the matrix because of the formation of ${\beta}-Nb$ particles.

Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC (고분자 전해질 연료전지 양극 작동 환경에서 실험 시간 및 작동 전압 변수에 따른 316L 스테인리스강의 전기화학적 특성과 손상 거동)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.451-465
    • /
    • 2021
  • In this investigation, electrochemical characteristics and damage behavior of 316L stainless steel polymer electrolyte membrane fuel cell(PEMFC) were analyzed by potentiodynamic and potentiostatic tests in cathode operating condition of PEMFC. As the result of potentiodynamic polarization test, range of passive region was larger than range of active region. In the result of potentiostatic test, damage depth and width, pit volume, and surface roughness were increased 1.57, 1.27, 2.48, and 1.34 times, respectively, at 1.2 V compared to 0.6 V at 24 hours. Also, as a result of linear regression analysis of damage depth and width graph, trend lines of damage depth and width according to applied potentials were 16.6 and 14.3 times larger, respectively. This demonstrated that applied potential had a greater effect on pitting damage depth of 316L stainless steel. The damage tendency values were 0.329 at 6 hours and 0.633 at 24 hours with applied potentials, representing rapid growth in depth direction according to the test times and applied potentials. Scanning electron microscopy images revealed that surface of specimen exhibited clear pitting damage with test times and applied potentials, which was thought to be because a stable oxide film was formed by Cr and Mo.

Consideration of MIL-STD-810G Explosive Atmosphere Test for Fighter Aircraft (전투기의 MIL-STD-810G 폭발성 대기 시험에 관한 고찰)

  • Lee, Jae-Won;Jung, Seung-Bum;Hwang, Young-Ha;Ko, Jeong-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.739-745
    • /
    • 2022
  • In various environmental requirements of a fighter aircraft, the explosive atmosphere is a test to verify whether or not military products are ignited for the safety of the aircraft system and crew. For the test, the explosive atmosphere test chamber owned by the Korea Institute of Industrial Technology (KITECH) was applied, and n-hexane, which has more sensitive ignition characteristics than general fuel, was used to conduct the test conservatively. Based on Procedure I, Method 511.6, MIL-STD-810G w/Change 1, the US military environmental test specification, the scope of application, tailoring guide, and detailed test procedures are checked, and the necessity of this test for each subsystem of the fighter aircraft is considered. In this study, we present the correct tailoring method by analyzing the explosive atmosphere test results for the components installed in the fighter aircraft and sharing the derived essential points.

Molecular Characterization of the Nitrate Reductase Gene in Chlorella vulgaris PKVL7422 Isolated from Freshwater in Korea (국내 담수에서 분리된 Chlorella vulgaris PKVL7422 질소환원 유전자의 분자적 특성)

  • Abdellaoui, Najib;Kim, Min-Jeong;Choi, Tae-Jin
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.659-665
    • /
    • 2022
  • Chlorella vulgaris is an important freshwater alga that is widely used as a food source by humans and animals. Recently, Chlorella has received considerable attention with regard to its potential application in aquaculture and the production of biofuels, nutrients, and therapeutic proteins. Recently, our laboratory acquired a new strain of C. vulgaris, PKVL7422, characterized by fast growth, ease of culture, and cultivability under dark conditions. However, the genes involved in its nitrogen assimilation are unknown. In this work, we identified the nitrate reductase (NR) gene of C. vulgaris PKVL7422 using rapid amplification of cDNA ends and genome walking. The NR gene of C. vulgaris PKVL7422 is approximately 8 kb long and composed of 18 introns and 19 exons, which encode 877 amino acids. An alignment analysis of the NR gene showed that it possesses the five domains and several invariant residues found in plant NRs. These results provide new insight into the molecular organization of the NR gene in algae.

Evaluation of Ignition Performance of Green Hypergolic Propellant (친환경 접촉점화 추진제 점화 성능 평가)

  • Sunjin Kim;Minkyu Shin;Jeongyeol Cha;youngsung Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Hypergolic propellants, which can ignite themselves without an ignition source, are difficult to handle due to their corrosiveness and toxicity. Therefore, it is necessary to develop green hypergolic propellants with little or no toxicity. In this study, basic research on green hypergolic ignition propellants was conducted. With 95% hydrogen peroxide as an oxidizer and CNU_HGFv1 as a fuel, ignition and combustion characteristics of propellants were evaluated through a drop test, an ignition test, and a combustion test. As a result of the drop test, the ignition delay time was 9.7 ms. It was 27 ms in the ignition test, which was fast enough to be used as a propellant. As a result of the combustion test, a combustion efficiency of 95.4~98.1% was achieved at about 11.7 bar. It was confirmed that fast and stable combustion was possible without hard start or combustion instability.

Effect of Number of Shutdown on the Decrease of Performance in PEM Water Electrolysis (PEM 수전해에서 정지횟수가 성능 감소에 미치는 영향)

  • Cheunho Chu;Jongwon Yang;Ilchai Na;Yoonjin Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.202-207
    • /
    • 2023
  • In the case of driving water electrolysis by receiving surplus electricity from solar and wind power generation, operation and stopping must be repeated according to weather fluctuations. When the PEMWE(Polymer Electrolyte Membrane Water Electrolysis) is driven and stopped, the PEM fuel cell is in the same state as the PEM fuel cell due to the residual hydrogen and oxygen, and the high potential of the water electrolysis formed during operation is highly likely to cause degradation of the electrode and membrane even during stopping. In this study, in order to check how much degradation of the electrode and membrane progresses during the repeated driving/shutdown process of PEM water electrolysis, the performance decrease was measured by changing the number of driving/shutdown for 144 hours. Changes in electrode catalyst active area, hydrogen permeability and fluorine emision rate of membranes were analyzed to measure changes in the properties of electrodes and polymer membranes. Overall, the PEMWE performance decreased as the number of stops increased. When stopped 5 times in 144 hours, the IrOx catalyst activity decreased by more than 30%, and the hydrogen permeability increased by 80%, confirming that both the electrode and the membrane were deteriorated.