• Title/Summary/Keyword: 연동해석

Search Result 318, Processing Time 0.028 seconds

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

The Cause Analysis of Greenhouse Damage for Heavy Snow using Large Displacement Analysis (폭설시 대변위해석을 이용한 온실의 피해원인 분석)

  • Park, Soon-Eung;Lee, Jong-Won;Lee, Suk-Gun;Lee, Hyun-Woo;Choi, Jae-Hyouk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.61-68
    • /
    • 2010
  • The collapsing accidents of pipe greenhouses in the farmhouse have been increased duo to heavy snow load. However, the study on exact structure analysis to prevent the collapse of pipe greenhouses is rare and the damage of the farmhouse is annually repeated. The method of existing structure analysis is basically made of linear elastic analysis based on the micro displacement. But the actual stiffness of the pipe greenhouse is significantly weaker than the stiffness of buildings and the load acting on the greenhouses gets to become relatively bigger. It means that the geometry shape of greenhouses changes so that the relation of strain-displacement gets to indicate a nonlinear behavior. Therefore, this study is performed to evaluate the structural safety so as to prevent the collapse of pipe greenhouses, which are the single-span greenhouse(farmhouse guidance shape, G) and multi-span greenhouse(farmhouse supply shape, 1-2W), by performing the large-displacement analysis considering nonlinear effects.

  • PDF

Numerical and Experimental Analysis for Disc Brake Squeal Induced by Caliper Mode (캘리퍼 모드에 의한 디스크 브레이크 스퀼 시험 및 해석)

  • Choi, Hoil;Kang, Jaeyoung;Gil, Hojong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1351-1358
    • /
    • 2014
  • This study numerically simulates brake squeal and validates it experimentally by using a lab-scaled brake dynamometer. The system frequencies of the disc brake are traced with respect to the brake pressure by using a modal test and FEM. Then, the squeal frequencies measured from the brake dynamometer are found to correspond to the brake system mode with the dominant displacement of the caliper and pad. Furthermore, a complex eigenvalue analysis conducted using the finite element model confirms that the caliper mode generating the rotational displacement of the pad becomes unstable owing to the negative friction-velocity slope.

Development and effect analysis of Low Impact Development web simulator (저영향개발 웹 시뮬레이터 개발 및 효과 분석)

  • Inkyeong Sim;Junbae Won;Soohyun Kim;Changyeon Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.254-254
    • /
    • 2023
  • 도시화로 인한 불투수면 증가에 따른 물 순환 왜곡 현상이 발생하고 있으며, 이에 따라 물관리를 위한 저영향개발 기법이 국내외에서 적극 도입되고 있는 실정이다. 따라서 본 연구에서는 강우입력에 따라 LID 해석이 가능한 저영향개발 디지털트윈 분석 시뮬레이터를 개발하였다. LID DT 분석 모듈은 LID 시설 해석에 특화된 모형으로 시나리오 강우 기반 시뮬레이션 및 실시간 강우량 연동을 통한 모의가 가능하며, LID 시뮬레이션을 위해 개별적으로 활용함과 동시에 실시간 강우량 연계 시뮬레이션이 가능하도록 개발하였다. 유역유출 계산은 SWMM 모형의 비선형 저류방정식을 기반으로 유출해석 및 기본 LID 해석은 EPA SWMM 엔진으로 해석하며 저수지 추적이 요구되는 빗물이용시설의 경우 별도의 모듈을 적용하였으며, SWMM LID 해석 결과의 시설별 상세 결과 표출이 가능하도록 개발하였다. 현재 LID DT 모형의 시범 지구 적용은 세종시 6-4 생활권 해밀마을을 대상으로 하였다. 소유역 24개소, 우수관로 27개소, 소유역 24개소 및 유역면적 51ha로, 총 64개의 LID 시설을 시설형식을 구분하여 소유역별로 적용하였다. LID 시설의 강우 발생일에 대한 첨두유량과 관측 결과를 비교하여 정상 상황과 비정상 상황의 유량 오차 발생 시 점검 경보 알림 기준을 설정하였으며, 이를 통해 LID 시설의 유지보수 정보를 제공할 수 있을 것으로 예상된다. 또한 실시간 강우 모의를 통해 빗물이용시설의 저류조 용량 대비 현재 빗물저류량을 계산하여 빗물이용시설의 빗물저류량에 대한 정보를 제공하여 물부족 발생알림을 제공 가능할 것으로 예상된다. 따라서 LID DT 시뮬레이터에 및 빗물이용시설 운영에 대한 의사결정 정보를 제공할 수 있을 것으로 판단된다.

  • PDF

Effect of roof slope on the transmissivities of direct and diffuse solar radiation in multispan glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 연동 유리온실내의 직달일사 및 산란일사 투과율에 미치는 지붕경사각의 영향)

  • 이석건;김용현
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.324-329
    • /
    • 1998
  • Effect of roof slope on the transmissivities of direct and diffuse solar radiation using a computer simulation model developed by Kim and Lee(1997) was analyzed for 10-span glasshouse located in Seoul(37$^{\circ}$34' N), Chonju(35$^{\circ}$49' N) and Cheju(33$^{\circ}$31' N). Transmissivities of diffuse solar radiation in glasshouse with roof slopes of 15, 20, 24.6, 30 and 35 degree were calculated as 61.3, 61.6, 61.7, 56.8 and 58.6%, respectively. Transmissivities of direct solar radiation(TDSR) during the period except summer season were highly affected by the roof slope. During the winter season, TDSR in glasshouse with roof slopes of 30 and 35 degree were higher than those with other roof slopes. Also, during the period except winter season, TDSR in glasshouse with roof slope of 20 degree were higher than those with other roof slopes. Difference in TDSR with latitude was significant during the period from October to February. At this period TDSR were highly appeared at lower latitude. Effect of roof slope on TDSR in S-N greenhouse was smaller than those in E-W greenhouse. It is considered that direct solar radiation highly transmitted in the glasshouse with roof slope of 20 degree.

  • PDF

Effects on the Jeju Island of Tsunamis Caused by Triple Interlocked Tokai, Tonankai, Nankai Earthquakes in Pacific Coast of Japan (일본 태평양 연안의 Tokai, Tonankai 및 Nankai의 3연동지진에 의한 지진해일이 제주도 연안에 미치는 영향)

  • Lee, Kwang-Ho;Kim, Min-Ji;Kawasaki, Koji;Cho, Sung;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.295-304
    • /
    • 2012
  • This study proposed a two-dimensional horizontal numerical model based on the nonlinear shallow water wave equations to simulate tsunami propagation and coastal inundation. We numerically investigated the possible impacts of tsunami caused by the triple interlocked Tokai, Tonankai and Nankai Earthquakes on the Jeju coastal areas, using the proposed model. The simultaneous Tokai, Tonankai and Nankai Earthquakes were created a virtual tsunami model of an M9.0 earthquake. In numerical analysis, a grid nesting method for the local grid refinement in shallow coastal regions was employed to sufficiently reproduce the shoaling effects. The numerical model was carefully validated through comparisons with the data collected during the tsunami events by 2011 East Japan Earthquake and 1983 central East Sea Earthquake (Nihonkai Chubu Earthquake). Tsunami propagation triggered by the combined Tokai, Tonanakai and Nankai, Earthquakes was simulated for 10 hours to sufficiently consider the effects of tsunami in the coastal areas of Jeju Island. The numerical results revealed that water level fluctuation in tsunami propagation is greatly influenced by water-depth change, refraction, diffraction and reflection. In addition, the maximum tsunami height numerically estimated in the coastal areas of Jeju Island was about 1.6 m at Sagye port.

Development of GUI Program for Automated Generation of Airfoil Performance Table (에어포일 공력 성능 테이블의 자동생성을 위한 GUI 환경의 프로그램 개발)

  • Kim, Tae-Woo;Lee, Jae-Won;Chae, Sang-Hyun;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.685-692
    • /
    • 2007
  • This paper describes the development procedure of GUI Program for the automated generation of airfoil performance table used in helicopter comprehensive code. Considering commercialization, the program is developed based on the Windows operating system. In addition, it is aimed to enhance user's convenience by including embedded postprocessor which enables real-time display of calculation procedure and grid system. Using the validated CFD code, the aerodynamic analyses are automated for a given range of Mach number and angles of attack. The computational grid system is designed to generate automatically once the surface coordinates are given. Mixed-Language scheme is employed in order to combine the CFD code in Fortran with C++ based GUI program, which makes the time-consuming code conversion unnecessary.

On Numerical Modeling of Kerosene/Liquid Oxygen Coaxial Swirl Injectors (케로신/액체산소 동축 와류형 분사기에 대한 수치해석 모델 고찰)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.729-732
    • /
    • 2010
  • The present study has been motivated by the development of a reliable numerical methodology for simulation of kerosene/LOx coaxial swirl injectors. To deal with thermodynamic non-ideality and anomalies of transport properties pronounced at supercritical pressures, a set of subroutine libraries has been constructed based on the cubic equations of state, and applied to an existing flamelet analysis code. For computational efficiency, two-dimensional axisymmetric RANS formulation with swirl was adopted and validated successfully against an isothermal coaxial swirling jet. For the actual problem with high pressure combustion, however, numerical results show that the RANS models yield excessive production of turbulence probably due to high density gradient magnitude in the vicinity of mixing layer of swirling film flow, and imply strongly further improvement of the turbulence models.

  • PDF

Parametric Design and Wind Load Application for Retractable Large Spatial Structures (개폐식 대공간 구조물의 파라메트릭 설계와 풍하중 적용)

  • Kim, Si-Uk;Joung, Bo-Ra;Kim, Chee-Kyeong;Lee, Si Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.341-348
    • /
    • 2019
  • The purpose of this study is to model and analyze retractable large spatial structures by applying parametric modeling techniques. The modeling of wind loads in the analysis of typical structures including curved surfaces can be error-prone, and the processing time increases dramatically when there are many types of variables. However, the method based on StrAuto that was developed in previous research, facilitates the efficacious assignment of wind loads to structures and the rapid arrival of conclusions. As a result, it is possible to compare alternatives with various loads, including wind loads, to determine an optimal alternative much faster than the existing process. Further, it is almost impossible to directly input the wind load by calculating the area of an irregularly curved surface. However, the proposed method automatically assigns the wind load, which allows for automatic optimization in a structural analysis system. The approach was applied and optimized using several models, and the results are presented.

Development of an Infinite Element for Non-linear Dynamic Analysis of Structures (구조물의 비선형 동적 해석을 위한 무한요소의 개발)

  • Kwon, Min-Ho;Han, Gil-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1053-1058
    • /
    • 2010
  • Infinite element approach has been widely used to analysis soil-structure interaction, in which the soil domain is treated as infinite domain. However, most of the developed infinite element has been formulated in the frequency domain rather than the time domain to include the frequency contents of the earthquake or vibration wave. Due to that, those approaches have a critical limitation which is restricted to the linear elastic analysis. To main objective of this research is to develop the infinite element in the time domain to cooperate the inelastic soil and structure behavior. Developed infinite element is verified with the results of finite element analysis modeled in large domain. The nonlinear analysis also conducted to demonstrate the application of developed infinite element. Hence, based on above-mentioned statements, it can be concluded that the propose approach would assist for structure-seismic design.