• Title/Summary/Keyword: 연구 토픽

Search Result 724, Processing Time 0.03 seconds

A Study on Issue Tracking on Multi-cultural Studies Using Topic Modeling (토픽 모델링을 활용한 다문화 연구의 이슈 추적 연구)

  • Park, Jong Do
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.273-289
    • /
    • 2019
  • The goal of this study is to analyze topics discussed in academic papers on multiculture in Korea to figure out research trends in the field. In order to do topic analysis, LDA (Latent Dirichlet Allocation)-based topic modeling methods are employed. Through the analysis, it is possible to track topic changes in the field and it is found that topics related to 'social integration' and 'multicultural education in schools' are hot topics, and topics related to 'cultural identity and nationalism' are cold topics among top five topics in the field.

News Topic Extraction based on Word Similarity (단어 유사도를 이용한 뉴스 토픽 추출)

  • Jin, Dongxu;Lee, Soowon
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1138-1148
    • /
    • 2017
  • Topic extraction is a technology that automatically extracts a set of topics from a set of documents, and this has been a major research topic in the area of natural language processing. Representative topic extraction methods include Latent Dirichlet Allocation (LDA) and word clustering-based methods. However, there are problems with these methods, such as repeated topics and mixed topics. The problem of repeated topics is one in which a specific topic is extracted as several topics, while the problem of mixed topic is one in which several topics are mixed in a single extracted topic. To solve these problems, this study proposes a method to extract topics using an LDA that is robust against the problem of repeated topic, going through the steps of separating and merging the topics using the similarity between words to correct the extracted topics. As a result of the experiment, the proposed method showed better performance than the conventional LDA method.

Seasonal analysis of Beach-related Issues using Local Newspaper Articles and Topic Modeling (지역신문기사 자료와 토픽모델링을 이용한 해변 관련 계절별 현안분석)

  • Yoo, Mu-Sang;Jeong, Su-Yeon;Kim, Geon-Hu;Sohn, Chul
    • Journal of the Korean Regional Science Association
    • /
    • v.34 no.4
    • /
    • pp.19-34
    • /
    • 2018
  • The purpose of this study is to analyze the seasonal issues using the local newspaper articles with the keyword beach from 2004 to 2017. Topic modeling and Time series regression analysis based on open source programs were performed for analysis. Topic modeling results showed 35 topics in spring, 47 topics in summer, 36 topics in autumn and 35 topics in winter. The common themes were 'beaches', 'festivals and events', 'accident and environmental issues', 'tourism', 'development and sale', 'administration and policy' and 'weather'. Time series regression analysis showed in the spring, 5 Hot-Topics and 2 Cold-Topic were found out of the 35 topics. In the summer, 6 Hot-Topics and 3 Cold-Topic were found out of the 47 topics. In the autumn, 4 Hot-Topics and 3 Cold-Topic were found out of the 36 topics. In the winter, 3 Hot-Topics and 3 Cold-Topic were found out of the 35 topics. And for each season, topics that do not fall into the Hot-Topic and Cold-Topic are classified as Neutral-Topic. In this study if seasonal uses are different such as beaches are deemed that seasonal topic modeling for analysis of regional issues will yield more useful results and enable detailed diagnosis.

A Prestigious University Students' Perceptions of their Educational Attainment by a Topic model (토픽모델을 활용한 명문대 재학생의 학벌에 관한 인식 분석)

  • Young Son Jung;Seung-Yun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.503-512
    • /
    • 2024
  • This study examines the essays of academic background, written by students from a university, which is classified into prestigious universities in Korean society. By Latent Dirichlet Allocation, 172 essays were analyzed to explore the students' perspectives of the academic fractionalism. The analysis identified five topics such as, functional aspects (Topic 1), double-edged nature (Topic 2), power communities (Topic 3), symbols of victory (Topic 4), and dysfunctional aspects (Topic 5). The most frequently appearing keywords are 'individual,' 'status,' and 'means' in Topic 1, 'definition,' 'school,' and 'meaning' in Topic 2, 'people,' 'origin,' and 'power' in Topic 3, 'university,' 'ability,' and 'effort' in Topic 4, and 'academic achievement,' 'South Korea,' and 'origin' in Topic 5. By exploring the topics, we found that students regarded class reproduction by education as important social issues and they showed little interest in other factors influencing academic fractionalism, such as race or ethnicity. these findings suggest that professars, who teach the impact of education on academic fractionalism, deal with the influence of diverse factors on academic fractionalism.

Topic and Sentiment Analysis on COVID19 Research in Korea Using Text Analysis (텍스트 분석을 이용한 코로나19 관련 국내논문의 토픽 및 감성연구)

  • Heo, Seong-Min;Yang, Ji-Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.329-331
    • /
    • 2021
  • 본 연구에서는 코로나19 관련 연구논문의 연구주제를 탐색하고 동향을 검토하고 있다. 또한 감성분석을 통해 부정적인 어조가 강한 경고가 되는 주제들을 알아본다. 잠재 디리슐레 할당(LDA)를 이용하여 총 8개의 토픽을 발견하 였고, 이를 구조적 토픽 모델링(STM)과 비교하여 비교적 안정적인 결과임을 확인하였다. 또한 k-means 군집 알고리즘을 통해 각 토픽별로 세부 연구주제를 발견하였고 주성분 분석을 이용하여 이를 시각적으로 표현하였다. 감성분석을 통해 각 토픽별 긍정적, 부정적인 단어들을 살펴보고 감성점수를 계산하여 연구논문의 주된 어조를 파악하였는데, 특히 생물 의학 관련, 국제적 역학관계, 심리적 영향과 관련된 연구에서 부정적인 어조가 강한 것으로 나타나 해당 부문에 대해서 주의와 관심이 요구된다. 향후 연구자들이 연구의 방향성을 탐색하고 정책결정자들이 연구지원 사업을 결정하는데 기초자료로 활용될 수 있을 것이다.

  • PDF

Investigation of Research Topic and Trends of National ICT Research-Development Using the LDA Model (LDA 토픽모델링을 통한 ICT분야 국가연구개발사업의 주요 연구토픽 및 동향 탐색)

  • Woo, Chang Woo;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.9-18
    • /
    • 2020
  • The research objectives investigates main research topics and trends in the information and communication technology(ICT) field, Korea using LDA(Latent Dirichlet Allocation), one of the topic modeling techniques. The experimental dataset of ICT research and development(R&D) project of 5,200 was acquired through matching with the EZone system of IITP after downloading R&D project dataset from NTIS(National Science and Technology Information Service) during recent five years. Consequently, our finding was that the majority research topics were found as intelligent information technologies such as AI, big data, and IoT, and the main research trends was hyper realistic media. Finally, it is expected that the research results of topic modeling on the national R&D foundation dataset become the powerful information about establishment of planning and strategy of future's research and development in the ICT field.

Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea: focused on LDA and HDP (국내 기록관리학 연구동향 분석을 위한 토픽모델링 기법 비교 - LDA와 HDP를 중심으로 -)

  • Park, JunHyeong;Oh, Hyo-Jung
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.4
    • /
    • pp.235-258
    • /
    • 2017
  • The purpose of this study is to analyze research trends of archives management in Korea by comparing LDA (Latent Semantic Allocation) topic modeling, which is the most famous method in text mining, and HDP (Hierarchical Dirichlet Process) topic modeling, which is developed LDA topic modeling. Firstly we collected 1,027 articles related to archives management from 1997 to 2016 in two journals related with archives management and four journals related with library and information science in Korea and performed several preprocessing steps. And then we conducted LDA and HDP topic modelings. For a more in-depth comparison analysis, we utilized LDAvis as a topic modeling visualization tool. At the results, LDA topic modeling was influenced by frequently keywords in all topics, whereas, HDP topic modeling showed specific keywords to easily identify the characteristics of each topic.

Research Topic Analysis of the Domestic Papers Related to COVID-19 Using LDA (LDA를 사용한 COVID-19 관련 국내 논문의 연구 토픽 분석)

  • Kim, Eun-Hoe;Suh, Yu-Hwa
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.423-432
    • /
    • 2022
  • This paper analyzes a total of 10,599 papers related to COVID-19 from January 2020 to July 2022 collected from the KCI site using LDA topic modeling so that academic researchers can understand the overall research trend. The results of LDA topic modeling are analyzed by major research categories so that academic researchers can easily figure out topics in their research fields. Then, the detailed research category information in which a lot of research is done by topic is analyzed. It is very important for academic researchers to understand the trend of research topics over time. Therefore, in this paper, the trend of topics is analyzed and presented using time series decomposition.

Research Trend Analysis on Smart healthcare by using Topic Modeling and Ego Network Analysis (토픽모델링과 에고 네트워크 분석을 활용한 스마트 헬스케어 연구동향 분석)

  • Yoon, Jee-Eun;Suh, Chang-Jin
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.981-993
    • /
    • 2018
  • Smart healthcare is convergence of ICT and healthcare services, and interdisciplinary research has been actively conducted in various fields. The objective of this study is to investigate trends of smart healthcare research using topic modeling and ego network analysis. Text analysis, frequency analysis, topic modeling, word cloud, and ego network analysis were conducted for the abstracts of 2,690 articles in Scopus from 2001 to April 2018. Topic Modeling analysis resulted in eight topics, Topics included "AI in healthcare", "Smart hospital", "Healthcare platform", "Blockchain in healthcare", "Smart health data", "Mobile healthcare", " Wellness care", "Cognitive healthcare". In order to examine the topic modeling results core deeply, we analyzed word cloud and ego network analysis for eight topics. This study aims to identify trends in smart healthcare research and suggest implications for establishing future research direction.

Topic Expansion based on Infinite Vocabulary Online LDA Topic Model using Semantic Correlation Information (무한 사전 온라인 LDA 토픽 모델에서 의미적 연관성을 사용한 토픽 확장)

  • Kwak, Chang-Uk;Kim, Sun-Joong;Park, Seong-Bae;Kim, Kweon Yang
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.9
    • /
    • pp.461-466
    • /
    • 2016
  • Topic expansion is an expansion method that reflects external data for improving quality of learned topic. The online learning topic model is not appropriate for topic expansion using external data, because it does not reflect unseen words to learned topic model. In this study, we proposed topic expansion method using infinite vocabulary online LDA. When unseen words appear in learning process, the proposed method allocates unseen word to topic after calculating semantic correlation between unseen word and each topic. To evaluate the proposed method, we compared with existing topic expansion method. The results indicated that the proposed method includes additional information that is not contained in broadcasting script by reflecting external documents. Also, the proposed method outperformed on coherence evaluation.