중적외선(mid-wave infrared, MWIR) 영상은 피복 및 객체의 온도를 파악할 수 있어 환경, 국방 등 다양한 분야에서 핵심 데이터로 사용된다. KOMPSAT-3A 위성은 타 위성에 비해 높은 공간해상도의 MWIR 영상을 제공하지만, 광학(electro-optical, EO) 영상에 비해 상대적으로 낮은 시인성을 가져 활용성의 확대에 어려움을 겪는다. 이에 본 연구에서는 KOMPSAT-3A 전정색(panchromatic, PAN) 영상의 윤곽 정보를 기반으로 시인성이 높은 MWIR 융합 영상을 제작하고자 한다. 먼저, 이종 센서에서 취득된 PAN 영상과 MWIR 영상의 상대 기하오차를 제거하는 전처리를 수행하고, 딥러닝 기반 윤곽 정보 추출 기술인 Pixel difference network (PiDiNet)의 사전 학습 모델을 이용하여 PAN 영상에 대한 윤곽 정보를 추출한다. 이후 전처리된 MWIR 영상과 추출된 윤곽 정보를 중첩하여 객체 경계면이 강조된 MWIR 융합 영상을 제작한다. 제안 방법을 이용하여 서로 다른 세 지역에 대한 MWIR 융합 영상을 제작하였으며, 이를 시각적으로 분석하였다. 본 기법을 통해 제작된 MWIR 융합 영상은 지형 및 지물의 경계면이 강조되어 시인성이 개선되었으며, 세부적으로 관심 지역에 대한 열 정보를 전달할 수 있었다. 특히, MWIR 융합 영상에서는 저해상도의 원본 MWIR 영상에서 식별할 수 없었던 비행기, 선박 등의 객체를 육안으로 판독할 수 있었다. 본 연구는 가시적인 정보와 열 정보를 동시에 고려할 수 있는 단일 영상 제작 방법론을 제시하였으며, 이는 MWIR 영상의 활용성 확대에 이바지할 수 있을 것으로 사료된다.
파워반도체는 전력의 변환, 변압, 분배 및 전력제어 등을 감당하는데 사용되는 반도체이다. 최근 세계적으로 고전압 파워반도체의 수요는 다양한 산업분야에 걸쳐 증가하고 있는 추세이며 해당 산업에서는 고전압 IGBT 부품의 최적화 연구가 절실한 상황이다. 고전압 IGBT개발을 위해서 wafer의 저항값 설정과 주요 단위공정의 최적화가 완성칩의 전기적특성에 큰 변수가 되며 높은 항복전압(breakdown voltage) 지지를 위한 공정 및 최적화 기술 확보가 중요하다. 식각공정은 포토리소그래피공정에서 마스크회로의 패턴을 wafer에 옮기고, 감광막의 하부에 있는 불필요한부분을 제거하는 공정이고, 이온주입공정은 반도체의 제조공정 중 열확산기술과 더불어 웨이퍼 기판내부로 불순물을 주입하여 일정한 전도성을 갖게 하는 과정이다. 본 연구에서는 IGBT의 3.3 kV 항복전압을 지지하는 ring 구조형성의 중요한 공정인 field ring 식각실험에서 건식식각과 습식식각을 조절해 4가지 조건으로 나누어 분석하고 항복전압확보를 위한 안정적인 바디junction 깊이형성을 최적화하기 위하여 TEG 설계를 기초로 field ring 이온주입공정을 4가지 조건으로 나누어 분석한 결과 식각공정에서 습식 식각 1스텝 방식이 공정 및 작업 효율성 측면에서 유리하며 링패턴 이온주입조건은 도핑농도 9.0E13과 에너지 120 keV로, p-이온주입 조건은 도핑농도 6.5E13과 에너지 80 keV로, p+ 이온주입 조건은 도핑농도 3.0E15와 에너지 160 keV로 최적화할 수 있었다.
최근 메타버스 기술이 다양한 분야에서 중요한 화두로 떠오르고 있다. 메타버스는 현실 세계와 유사한 사회적, 경제적 활동이 가능한 3차원의 가상공간을 의미한다. 2023년 9월부터 12월까지 본 대학 방사선학과에서 메타버시티 앱을 적용하여 수업한 3학년 재학생 235명 중 설문에 참여한 200명을 그 대상으로 메타버시티 앱을 적용 시 학생의 호응도와 만족도 차이를 분석하였다. 첫째, VOD 시청 방법으로 만족하는 방식은 메타버시티 앱을 통한 시청, LMS를 통한 시청의 순이었다. 둘째, '나는 휴일 보강은 온라인 영상이 적절하다고 생각한다.' 가 4.35±0.60으로 가장 높은 점수를 보였으며, '나는 대면수업과 온라인 수업이 병행되었으면 한다.'는 4.25±0.87이었으며, '나는 메타버시티 앱을 통해 잘 시청하였다.'는 4.10±0.30, '수업에서 메타버시티 앱을 통한 VOD 시청은 적절하게 사용되었다.'는 3.99±0.75로 가장 낮게 나타났다. 또한 수업 방법의 호응도는 유의한 차이가 없었다(p>0.05). 셋째, 메타버시티 앱을 이용한 VOD 시청의 만족도로 '메타버시티 앱을 적용하니 흥미롭고 재미가 있었다.'가 4.24±0.88로 가장 높은 점수를 보였으며, '적극적인 메타버시티 앱을 활용하기 위해서는 보다 나은 개선이 필요하다.'가 4.00±0.45로, '메타버시티 앱이 다른 원격수업에서도 시행되었으면 한다.'가 3.77±0.88로 나타났다. '기존 LMS 방식보다 메타버시티 앱을 통한 VOD 수업이 낫다.'가 3.44±0.66으로 나타났다. 또한 나이, 성별에 따른 수업에 대한 만족도는 유의한 차이는 없었다(p>0.05). 메타버시티 앱에 대한 호응도와 만족도의 상관관계는 0.601이며, 이는 매우 유의한 것으로 나타났다(p>0.001). 본 연구의 제한점으로 메타버시티 앱을 활용한 교육 만족도를 조사하였으나, 지도하는 교수자와 학생과 상호 작용 만족도는 조사 하지 못하였으며, 차후 교수자의 메타버시티 앱을 활용한 수업의 만족도 연구가 진행되어야 할 것이다. 원격수업을 대비하기 위한 메타버시티 앱을 수업에 적용하기 위해서는 대학에서 행정적 및 제도적 지원과 지속적인 주목을 하여야 할 것이다.
본 연구는 무김치에서 우점균인 Leuconostoc속의 균주 특성을 살펴보고 유용한 균주를 발굴하여 소재화하기 위해 수행되었는데, 이들 Leuconostoc속 4균주의 효소학적 특성, 안전성 평가, 및 면역증강 효과는 양성대조구 LGG와 함께 비교·분석하였다. 효소활성 평가에서 모든 시험균주들은 벤조피렌과 같은 발암성 전구물질 생성과 연관된 β-glucuronidase 효소활성을 갖고 있지 않았고, β-1,4 당쇄결합을 유리시키는 β-glucosidase 효소활성을 나타내어 식품, 세제, 화학 등 여러 산업 분야로의 활용성을 기대할 수 있는 특징을 보유하고 있었다. 또한, 시험균주들에 대한 항생제 내성 평가결과는 8종 항생제들에 대해 MIC 값이 EFSA 기준치 이하로 감수성을 나타내었다. 용혈성 현상 실험 결과, 4종의 시험균주와 양성대조구로 사용된 LGG균은 모두 용혈능이 없는 감마 용혈 현상을 나타내었고, 병원성 미생물 4종에 대한 항균활성 결과에서도 Leu. mesenteroides K2-4 균주가 B. cereus와 Sta. aureus에 대하여 각각 19±0과 20±0 mm의 억제환을 나타내었는데, 이는 양성대조구인 LGG균보다 높은 항균활성을 보였다. 대식세포 RAW cell에 시험균주들을 처리하였을 때 NF-kB/AP-1 전사인자의 활성도는 모든 유산균주가 처리 농도가 낮을수록 농도 의존적으로 증가하였다. 이들 세포들에 의해 염증성매개물질 중 TNF-α와 IL-6의 생성량 역시 시험균주의 처리 농도가 낮을수록 높은 값을 보였는데, 특히 Leu. mesenteroides K2-4 균주는 모든 항목에서 다른 균주들에 비해 뚜렷한 차이를 보였다. 또한, mRNA 수준에서 TNF-α와 IL-6 발현량 역시 통계적 유의수준(p<0.05)으로 높은 활성을 저농도에서 처리하였을 때 유의적(p<0.05)으로 높은 값을 나타내었다. 따라서 이들 균주들이 분비한 사이토카인들은 T세포와 B세포를 자극하여 체내 면역체계를 활성화시켜 면역증강에 기여할 수 있을 것으로 사료된다. 종합적으로 본 연구에서 사용한 모든 Leuconostoc 균주들은 효소활성과 안전성이 확인되었는데, 그 중 Leu. mesenteroides K2-4균주가 높은 면역활성능을 보여, 향후 면역 기능 개선을 위한 건강기능식품 개발을 위한 후보소재로서 유용하게 이용될 수 있을 것으로 기대된다.
멀티모달 (multi-modal) 생성이란 텍스트, 이미지, 오디오 등 다양한 정보를 기반으로 결과를 도출하는 작업을 말한다. AI 기술의 비약적인 발전으로 인해 여러 가지 유형의 데이터를 종합적으로 처리해 결과를 도출하는 멀티모달 기반 시스템 또한 다양해지는 추세이다. 본 논문은 음성과 텍스트 인식을 활용하여 인물을 묘사하면, 몽타주 이미지를 생성하는 AI 시스템의 개발 내용을 소개한다. 기존의 몽타주 생성 기술은 서양인들의 외형을 기준으로 이루어진 반면, 본 논문에서 개발한 몽타주 생성 시스템은 한국인의 안면 특징을 바탕으로 모델을 학습한다. 따라서, 한국어에 특화된 음성과 텍스트의 멀티모달을 기반으로 보다 정확하고 효과적인 한국형 몽타주 이미지를 만들어낼 수 있다. 개발된 몽타주 생성 앱은 몽타주 초안으로 충분히 활용 가능하기 때문에 기존의 몽타주 제작 인력의 수작업을 획기적으로 줄여줄 수 있다. 이를 위해 한국지능정보사회진흥원의 AI-Hub에서 제공하는 페르소나 기반 가상 인물 몽타주 데이터를 활용하였다. AI-Hub는 AI 기술 및 서비스 개발에 필요한 인공지능 학습용 데이터를 구축하여 원스톱 제공을 목적으로 한 AI 통합 플랫폼이다. 이미지 생성 시스템은 고해상도 이미지를 생성하는데 사용하는 딥러닝 모델인 VQGAN과 한국어 기반 영상생성 모델인 KoDALLE 모델을 사용하여 구현하였다. 학습된 AI 모델은 음성과 텍스트를 이용해 묘사한 내용과 매우 유사한 얼굴의 몽타주 이미지가 생성됨을 확인할 수 있다. 개발된 몽타주 생성 앱의 실용성 검증을 위해 10명의 테스터가 사용한 결과 70% 이상이 만족한다는 응답을 보였다. 몽타주 생성 앱은 범죄자 검거 등 얼굴의 특징을 묘사하여 이미지화하는 여러 분야에서 다양하게 사용될 수 있을 것이다.
본 연구는 디지털 대전환이 빠르게 진행되는 환경에서 빅테크 플랫폼 기업들의 스포츠콘텐츠 비즈니스의 특징을 밝히는 데 있다. 구체적으로는 아마존을 대상으로 빅테크 플랫폼 기업의 시장구조를 살펴보고 이런 구조에서 스포츠콘텐츠가 그들에게 어떤 역할을 하는지 아마존의 스포츠마케팅 사업의 특징을 밝혀 빅테크 플랫폼 기업의 스포츠콘텐츠 비즈니스를 전망하였다. 양면시장 플랫폼 비즈니스를 기반으로 한 빅테크 플랫폼 기업들은 자신들의 플랫폼의 가치를 제고하는 전략에 스포츠콘텐츠가 존재하고 있다. 때문에 스포츠콘텐츠는 이들에게 플랫폼의 가치를 높이고 나아가 인프라와 같은 플랫폼 생태계의 시너지를 높여 수익을 극대화함으로써 독점적 지위를 공고히 하는 도구로 사용된다. 아마존은 대륙이나 국가별로 인기 있는 라이브스포츠중계권을 획득하여 이를 플랫폼에 공급하여 신규고객의 증가와 구매효과 뿐 아니라 경기단체나 팀에게 IT솔루션 서비스를 제공하고 다양한 프로모션 콘텐츠를 기획 공급하면서 광고 사업을 비롯한 아마존 플랫폼 전체에 시너지를 내고 있다. 아마존프라임비디오와 아마존 프라임에 라이브 스포츠 콘텐츠를 공급하고, 아마존 웹 서비스를 통해 다양한 스포츠 이해관계자들에게 기술적 서비스를 제공하고 있으며 동시에 광고주의 광고와 마케팅 성과를 분석하고 예측하는 아마존마케팅클라우드 서비스를 제공하면서 비즈니스 기회를 넓히고 아마존 전체의 가치를 높이고 있다. 이는 양면시장 플랫폼 기반의 빅테크 기업과 단면시장 기반의 레거시 글로벌 기업과의 시장구조의 차이에서 기인하며 디지털시대 스포츠마케팅 비즈니스의 새로운 변화라고 할 수 있다. 이 새로운 모델의 핵심은 라이브스포츠 스트리밍 중계권을 기반으로 한 다양한 콘텐츠 개발을 통한 비즈니스이며 스포츠콘텐츠 마케팅은 기존 중계권, 스폰서십과 함께 스포츠비즈니스의 주요 분야가 될 것이다. 아마존, 애플, 구글과 같은 빅테크 플랫폼 글로벌 기업들은 또 다른 새로운 글로벌 스포츠마케팅 기업이 될 수 있으며 현재의 스포츠마케팅 회사와 광고회사 그리고 팀과 경기단체들은 위기와 기회가 공존해 있다.
정보 통신 기술의 기하급수적인 발전에 따라 확보 가능한 데이터의 종류와 크기가 증가하고 있다. 이러한 대량의 데이터를 활용하기 위해, 통계 등 확보한 데이터를 분석하는 것이 중요하지만 다양화되고 복잡도가 증가한 데이터를 일반적인 방법으로 처리하는 것에는 명확한 한계가 있다. 한편, 연산 처리 능력 고도화 및 자동화 시스템에 대한 수요 증가에 따라 다양한 분야에 기계 학습을 적용하여 그동안 해결하지 못하였던 문제들을 풀고자 하는 시도가 증가하고 있다. 기계 학습 모델의 성능을 확보하기 위해서 모델의 입력에 사용되는 데이터를 가공하는 것과 해결하고자 하는 목적 함수에 따라 모델을 설계하는 것이 중요하다. 많은 연구를 통해 데이터의 종류 및 특성에 따라 데이터를 처리하는 방법이 제시되었으며, 그 방법에 따라 기계 학습의 성능에는 큰 차이가 나타난다. 그럼에도 불구하고, 데이터의 종류와 특성이 다양해짐에 따라 데이터 분석을 위하여 어떠한 데이터 처리 방법을 적용해야 하는지에 대한 어려움이 존재한다. 특히, 기계 학습을 이용하여 비선형적 문제를 해결하기 위해서는 다변량 데이터를 처리하는 것이 필수적이다. 본 논문에서는 다양한 형태의 변수를 포함하는 Kaggle의 Titanic 데이터셋을 이용하여 기계 학습 기반으로 데이터 분석을 수행하기 위한 다변량 정형 (tabular) 데이터 처리 방법에 대해 제시한다. 데이터 특성에 따른 통계 분석을 적용한 입력 변수 필터링, 데이터 정규화 등의 처리 방법을 제안하고, 데이터 시각화를 통해 데이터 구조를 분석한다. 마지막으로, 기계 학습 모델을 설계하고, 제안하는 다변량 데이터 처리를 적용하여 모델을 훈련시킨다. 그 이후, 훈련된 모델을 사용하여 탑승객의 생존 여부 예측 성능을 분석한다. 본 논문에서 제시하는 다변량 데이터 처리와 시각화를 적용하여 다양한 환경에서 기계 학습 기반 분석에 확장할 수 있을 것으로 기대한다.
실버세대의 중요성은 인구 증가뿐만 아니라 구매력의 향상 및 의사 표현의 강도가 증가하면서 더욱 커지고 있다. 이에 따라 과거 실버세대 전체를 대상으로 접근하던 마케팅 전략은 실버세대의 특성에 따라 적절히 분류하여 접근하는 방식으로 수정되는 것이 적절하다. 또한 세분군 분류 결과에 따라 고객 접근 전략이 결정되므로, 세분군이 얼마나 동일한 특성을 보유하고 있는 지는 마케팅 계획 수립에 매우 중요한 요소가 된다. 따라서 이론적으로 동일 세분군에 속해 있는 고객의 니즈는 대체로 일치해야 한다. 본 연구에서는 실버세대의 생활 행태와 생애 단계를 감안하여, 실버 세대 대상의 마케팅을 위한 세분군 (細分群) 분류를 수행하였으며, 분류된 세분군의 니즈가 얼마나 일치하고 있는지를 측정하기 위하여 동질도 (DoH: Degrees of Homogeneity)를 측정하였다. 동질도는 각 세분군을 대상으로 수행된 설문조사의 객관식 문항 별로 최다 응답자가 선택한 보기 문항이 다른 문항에 비하여 유의미하게 많다고 판단되는 문항의 수를 전체 문항의 수로 나눈 것으로 정의하였다. 본 연구는 동질도를 활용한 세분군 분류 결과의 적절성 평가 방법을 제시하였다는데 의의가 있으며, 다양한 분야에서 응용될 수 있을 것으로 판단된다. 또한 본 연구에서 제시한 실버세대 세분군 분류 결과는 점차 증가하고 있는 실버세대를 위한 마케팅 방안 수립의 기본 자료로 활용될 수 있을 것으로 판단된다.
전통적으로 신문 매체는 국내외에서 발생하는 사건들을 살피는 데에 가장 적합한 매체이다. 최근에는 정보통신 기술의 발달로 온라인 뉴스 매체가 다양하게 등장하면서 주변에서 일어나는 사건들에 대한 보도가 크게 증가하였고, 이것은 독자들에게 많은 양의 정보를 보다 빠르고 편리하게 접할 기회를 제공함과 동시에 감당할 수 없는 많은 양의 정보소비라는 문제점도 제공하고 있다. 본 연구에서는 방대한 양의 뉴스기사로부터 데이터를 추출하여 주요 사건을 감지하고, 사건들 간의 관련성을 판단하여 사건 네트워크를 구축함으로써 독자들에게 현시적이고 요약적인 사건정보를 제공하는 기법을 제안하는 것을 목적으로 한다. 이를 위해 2016년 3월에서 2017년 3월까지의 한국 정치 및 사회 기사를 수집하였고, 전처리과정에서 NPMI와 Word2Vec 기법을 활용하여 고유명사 및 합성명사와 이형동의어 추출의 정확성을 높였다. 그리고 LDA 토픽 모델링을 실시하여 날짜별로 주제 분포를 계산하고 주제 분포의 최고점을 찾아 사건을 탐지하는 데 사용하였다. 또한 사건 네트워크를 구축하기 위해 탐지된 사건들 간의 관련성을 측정을 위하여 두 사건이 같은 뉴스 기사에 동시에 등장할수록 서로 더 연관이 있을 것이라는 가정을 바탕으로 코사인 유사도를 확장하여 관련성 점수를 계산하는데 사용하였다. 최종적으로 각 사건은 각의 정점으로, 그리고 사건 간의 관련성 점수는 정점들을 잇는 간선으로 설정하여 사건 네트워크를 구축하였다. 본 연구에서 제시한 사건 네트워크는 1년간 한국에서 발생했던 정치 및 사회 분야의 주요 사건들이 시간 순으로 정렬되었고, 이와 동시에 특정 사건이 어떤 사건과 관련이 있는지 파악하는데 도움을 주었다. 또한 일련의 사건들의 시발점이 되는 사건이 무엇이었는가도 확인이 가능하였다. 본 연구는 텍스트 전처리 과정에서 다양한 텍스트 마이닝 기법과 새로이 주목받고 있는 Word2vec 기법을 적용하여 봄으로써 기존의 한글 텍스트 분석에서 어려움을 겪고 있었던 고유명사 및 합성명사 추출과 이형동의어의 정확도를 높였다는 것에서 학문적 의의를 찾을 수 있다. 그리고, LDA 토픽 모델링을 활용하기에 방대한 양의 데이터를 쉽게 분석 가능하다는 것과 기존의 사건 탐지에서는 파악하기 어려웠던 사건 간 관련성을 주제 동시출현을 통해 파악할 수 있다는 점에서 기존의 사건 탐지 방법과 차별화된다.
최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.