• Title/Summary/Keyword: 연구데이터 공유

Search Result 1,602, Processing Time 0.028 seconds

A Study on the Development of Intravenous Injection Management Application for EMR System Interworking (EMR 시스템 연동 정맥주사 관리 애플리케이션 개발에 대한 연구)

  • Jin-Hyoung, Jeong;Jae-Hyun, Jo;Seung-Hun, Kim;Won-yeop, Park;Sang-Sik, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.506-514
    • /
    • 2022
  • This paper is about developing an intravenous injection management system that can provide nurses with information related to intravenous injection in real-time to compensate for possible instability factors during intravenous injection. The intravenous injection management system consists of an app-based user S/W and a web-based administrator S/W. User S/W is implemented to provide users with the ability to identify patients who need intravenous injection through smartphones, tablet PCs, and nursing PDAs, recognize information codes given to patients, and enter and share treatment contents and treatment items after intravenous injection. As a result of intravenous injection treatment uploaded through the user app, the manager S/W can check the records of intravenous injection treatment items, perform user management functions, emergency notification registration and management functions, and data upload functions. The implemented system has not yet been tested on the EMR system used in the actual hospital. Therefore, through further research, S/W will be optimized and actual environmental application tests will be conducted through cooperation with hospitals.

An Analysis Study on the Current Status and Integration Methods of the Domestic Early Warning System (국내 재난 예경보 시스템 현황 및 통합 방안에 대한 분석 연구)

  • Hwang, Woosuk;Pyo, Kyungsoo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.80-90
    • /
    • 2022
  • Currently, the domestic early warning system is issued differently for each disaster, and is operated independently by relevant organizations from central government to local governments. Representative domestic disaster warning systems include disaster broadcasting using CBS(Cell Broadcasting Service) and DMB(Digital Multimedia Broadcasting) Automatic Emergency Alert Service, DITS(Disaster Information Transform System) transmitted and displayed on TV screens, automatic response system, automated rainfall warning system, and disaster message board. However, due to the difference in the method of issuing each emergency alert at the site of an emergency disaster, the alerts are issued at different times for each media, and the delivered content is also not integrated. If these systems are integrated, it is expected that damage to people's property and lives will be minimized by sharing and integrated management of disaster information such as voice, video, and data to comprehensively judge and make decisions about disaster situations. Therefore, in this study, we present a plan for the integration of the disaster warning system along with the analysis of the operation status of the domestic early warning system.

A Study on China's SNS Opinion Leader through Social Data (소셜 데이터를 통한 중국의 여론 주도층에 관한 연구)

  • Zheng, Xuan;Lee, Jooyoup
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.9
    • /
    • pp.59-70
    • /
    • 2016
  • The rapid development of the Chinese version of Twitter, the groom Weibo has become an important communication means for Chinese SNS users to obtain and share information. As a result, in China, the phenomenon of the power shift has emerged from the traditional opinion leaders to SNS opinion leasers. The relationship analysis of demographic variables of the Chinese SNS users and their Information on the relationship between keywords was made by utilizing the centrality analysis using Social Network Program NetMiner. China's SNS opinion leaders have general interest in daily activities with their families or friends rather than in social issues. And in case of SNS opinion leaders of high betweenness centrality, it was analyzed that general users was a key mediator role that organically out lead to the adjacent information. These properties are not independent of demographic variables, such as professional, therefore, the demographic characteristics of SNS opinion leaders showed a significant effect on the parameters of betweenness centrality. This study analyzed the characteristics of SNS users, especially opinion leaders in China by looking at the aspects of Chinese social phenomenon in terms of information. Through this study, we expect to provide basic information about the social characteristics of China through collective communication.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

Verification the Systems Thinking Factor Structure and Comparison of Systems Thinking Based on Preferred Subjects about Elementary School Students' (초등학생의 시스템 사고 요인 구조 검증과 선호 과목에 따른 시스템 사고 비교)

  • Lee, Hyonyong;Jeon, Jaedon;Lee, Hyundong
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.2
    • /
    • pp.161-171
    • /
    • 2019
  • The purposes of this study are: 1) to verify the systems thinking factor structure of elementary school students and 2) to compare systems thinking according to their preferred subjects in order to get implications for following research. For the study, pre-tests analyze data from 732 elementary school students using the STMI (Systems Thinking Measuring Instrument) developed by Lee et al. (2013). And exploratory factor analysis was conducted to identify the factor structure of the students. Based on the results of the pre-test, the expert group council revised the STMI so that elementary school students could respond to the 5-factor structure that STMI intended. In the post-test, 503 data were analyzed by modified STMI and exploratory factor analysis was performed. The results of the study are as follows: First, in the pre-test, elementary school students responded to the STMI with a test paper consisting of two factors (personal internal factors and personal external factors). The total reliability of the instrument was .932 and the reliability of each factor was analyzed as .857 and .894. Second, for modified STMI, elementary school students responded a 4-factor instrument. Team learning, Shared Vision, and Personal Mastery were derived independent factors, and mental model and systems analysis were derived 1-factor. The total reliability of the instrument was .886 and the reliability of each factor was analyzed as .686 to .864. Finally, a comparison of systems thinking according to preferred subjects showed a significant difference between students who selected science (engineering) group and art (music and physical education). In conclusion, it was confirmed that statistically meaningful results could be obtained using STMI modified by term and sentence structure appropriate for elementary school students, and it is a necessary to study the relation of systems thinking with various student variables such as the preferred subjects.

The Need and Improvement Direction of New Computer Media Classes in Landscape Architectural Education in University (대학 내 조경전공 교육과정에 있어 새로운 컴퓨터 미디어 수업의 필요와 개선방향)

  • Na, Sungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.1
    • /
    • pp.54-69
    • /
    • 2021
  • In 2020, civilized society's overall lifestyle showed a distinct change from consumable analog media, such as paper, to digital media with the increased penetration of cloud computing, and from wired media to wireless media. Based on these social changes, this work examines whether the use of computer media in the field of landscape architecture is appropriately applied. This study will give directions for new computer media classes in landscape architectural education in the 4th Industrial Revolution era. Landscape architecture is a field that directly proposes the realization of a positive lifestyle and the creation of a living environment and is closely connected with social change. However, there is no clear evidence that landscape architectural education is making any visible change, while the digital infrastructure of the 4th Industrial Revolution, such as Artificial Intelligence (AI), Big Data, autonomous vehicles, cloud networks, and the Internet of Things, is changing the contemporary society in terms of technology, culture, and economy among other aspects. Therefore, it is necessary to review the current state of the use of computer technology and media in landscape architectural education, and also to examine the alternative direction of the curriculum for the new digital era. First, the basis for discussion was made by studying the trends of computational design in modern landscape architecture. Next, the changes and current status of computer media classes in domestic and overseas landscape education were analyzed based on prior research and curriculum. As a result, the number and the types of computer media classes increased significantly between the study in 1994 and the current situation in 2020 in the foreign landscape department, whereas there were no obvious changes in the domestic landscape department. This shows that the domestic landscape education is passively coping with the changes in the digital era. Lastly, based on the discussions, this study examined alternatives to the new curriculum that landscape architecture department should pursue in a new degital world.

A Study on Documentation Strategy for Archiving Locality (지역 아카이빙을 위한 기록화방안 연구)

  • Kwon, Soon-Myung;Lee, Seung-Hwi
    • The Korean Journal of Archival Studies
    • /
    • no.21
    • /
    • pp.41-84
    • /
    • 2009
  • Lots of cultures, memories, histories of the local life have disappeared. Some sectors of universities and religion have keep their records in manuscript archive only. On the other hand records of public sectors were at least able to be managed by the records management law. Citizen's groups and academic bounds were also roles to get public records strong. However can we just describe whole body with only public records? As records management law a record of private sector which has value of preserving can be managed under national protection. Yet establishment of local archive is not obligate. Only stressing on public records is like what dictatorial government acted in past years. It is what we ignore diversity and request of community. We need to move our view that we have focused on public and central sectors to private and local sectors. Local records management based on locality could help to complete the entire puzzle. The way complete the puzzle is various and wide spheres including from cultural space to being extinct village. Locality is defined as the property in certain area or distinctiveness of locals. Establishing production strategies is as important as collecting records produced over the past years for local archiving. Local archiving has to be regionally conducted in phase. Moreover common wealth and recognition of communities are reflected in the acquisition process. In next to archiving local organizations and private records according to collection policy, methodology on local archiving needs for archive management and use in various public and private fields. This methodology could be possible by building a local archive networking tool. It is true that Local archiving is not familiar and clear yet. If we can turn the effort for public records we have made to endeavor for private sectors, we might expect big fruits in private sectors. We easily emphasis on globalization or internationalization, our daily lives start on our villages. Setting aside our small communities, such a puzzle of the whole would never be completed. This is good time to begin finding lost puzzle for future. The key that can find lost puzzles be held in archiving localities.

The Study on Improvement of the Digital Transformation of Small and Medium-Sized Manufacturing Industries through Foreign Countries (주요국 정책을 통한 중소 제조기업의 디지털 전환 추진 방향 모색)

  • An, Jung-in
    • Journal of Venture Innovation
    • /
    • v.5 no.4
    • /
    • pp.109-115
    • /
    • 2022
  • As the 4th industrial revolution progresses, foreign countries are promoting smart manufacturing innovation through digital transformation as a priority task early on to secure a competitive edge in the manufacturing industry. In response, the Korean government is also promoting a policy to enhance the competitiveness of small and medium-sized manufacturing companies by promoting digital transformation in the corporate sector to meet the global trend of the 4th industrial revolution era. Manufacturing powerhouses such as Germany and Japan see manufacturing as a key sector in digital transformation and are leading related policies, while emerging countries such as China are also promoting manufacturing innovation strategies such as building digital infrastructure and creating a digital innovation ecosystem. Korea is promoting the 'Korean-style smart factory dissemination and expansion strategy' by transforming Germany's manufacturing innovation strategy for smart factory supply to suit the domestic situation. However, the policy to supply smart factories so far has been conducted with support from individual companies under the leadership of the government, and most of the smart factories are at the basic level, and it is evaluated that there are limitations such as the lack of manpower to operate smart factories. In addition, while the current policy focuses on expanding the supply of smart factories in SMEs, it is necessary to establish a smart manufacturing system through linkages between large and small businesses in order to achieve the original goal of establishing a smart manufacturing system. Therefore, it can be said that from the standpoint of small and medium-sized enterprises (SMEs), who are consumers of smart factories, it can be said that the digital transformation policy can achieve the expected results only when appropriate incentives are provided for the introduction of smart factories in a situation where management resources such as funds, technology, and human resources are lacking. In addition, it is judged that the uncertainty of the performance of digital investment always exists, and as long as large and small companies are maintained as an ecosystem of delivery and subcontracting, there is very little incentive for small and medium-sized manufacturing companies to voluntarily invest in or advance digital transformation. Therefore, the digital transformation policy of small and medium-sized manufacturing companies in the future has practical significance in that it suggests that there is a need to seek ways to attract SMEs' digital-related voluntary investment.

A Study for the Methodology of Analyzing the Operation Behavior of Thermal Energy Grids with Connecting Operation (열 에너지 그리드 연계운전의 운전 거동 특성 분석을 위한 방법론에 관한 연구)

  • Im, Yong Hoon;Lee, Jae Yong;Chung, Mo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • A simulation methodology and corresponding program based on it is to be discussed for analyzing the effects of the networking operation of existing DHC system in connection with CHP system on-site. The practical simulation for arbitrary areas with various building compositions is carried out for the analysis of operational features in both systems, and the various aspects of thermal energy grids with connecting operation are highlighted through the detailed assessment of predicted results. The intrinsic operational features of CHP prime movers, gas engine, gas turbine etc., are effectively implemented by realizing the performance data, i.e. actual operation efficiency in the full and part loads range. For the sake of simplicity, a simple mathematical correlation model is proposed for simulating various aspects of change effectively on the existing DHC system side due to the connecting operation, instead of performing cycle simulations separately. The empirical correlations are developed using the hourly based annual operation data for a branch of the Korean District Heating Corporation (KDHC) and are implicit in relation between main operation parameters such as fuel consumption by use, heat and power production. In the simulation, a variety of system configurations are able to be considered according to any combination of the probable CHP prime-movers, absorption or turbo type cooling chillers of every kind and capacity. From the analysis of the thermal network operation simulations, it is found that the newly proposed methodology of mathematical correlation for modelling of the existing DHC system functions effectively in reflecting the operational variations due to thermal energy grids with connecting operation. The effects of intrinsic features of CHP prime-movers, e.g. the different ratio of heat and power production, various combinations of different types of chillers (i.e. absorption and turbo types) on the overall system operation are discussed in detail with the consideration of operation schemes and corresponding simulation algorithms.

Increasing Accuracy of Classifying Useful Reviews by Removing Neutral Terms (중립도 기반 선택적 단어 제거를 통한 유용 리뷰 분류 정확도 향상 방안)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.129-142
    • /
    • 2016
  • Customer product reviews have become one of the important factors for purchase decision makings. Customers believe that reviews written by others who have already had an experience with the product offer more reliable information than that provided by sellers. However, there are too many products and reviews, the advantage of e-commerce can be overwhelmed by increasing search costs. Reading all of the reviews to find out the pros and cons of a certain product can be exhausting. To help users find the most useful information about products without much difficulty, e-commerce companies try to provide various ways for customers to write and rate product reviews. To assist potential customers, online stores have devised various ways to provide useful customer reviews. Different methods have been developed to classify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most shopping websites provide customer reviews and offer the following information: the average preference of a product, the number of customers who have participated in preference voting, and preference distribution. Most information on the helpfulness of product reviews is collected through a voting system. Amazon.com asks customers whether a review on a certain product is helpful, and it places the most helpful favorable and the most helpful critical review at the top of the list of product reviews. Some companies also predict the usefulness of a review based on certain attributes including length, author(s), and the words used, publishing only reviews that are likely to be useful. Text mining approaches have been used for classifying useful reviews in advance. To apply a text mining approach based on all reviews for a product, we need to build a term-document matrix. We have to extract all words from reviews and build a matrix with the number of occurrences of a term in a review. Since there are many reviews, the size of term-document matrix is so large. It caused difficulties to apply text mining algorithms with the large term-document matrix. Thus, researchers need to delete some terms in terms of sparsity since sparse words have little effects on classifications or predictions. The purpose of this study is to suggest a better way of building term-document matrix by deleting useless terms for review classification. In this study, we propose neutrality index to select words to be deleted. Many words still appear in both classifications - useful and not useful - and these words have little or negative effects on classification performances. Thus, we defined these words as neutral terms and deleted neutral terms which are appeared in both classifications similarly. After deleting sparse words, we selected words to be deleted in terms of neutrality. We tested our approach with Amazon.com's review data from five different product categories: Cellphones & Accessories, Movies & TV program, Automotive, CDs & Vinyl, Clothing, Shoes & Jewelry. We used reviews which got greater than four votes by users and 60% of the ratio of useful votes among total votes is the threshold to classify useful and not-useful reviews. We randomly selected 1,500 useful reviews and 1,500 not-useful reviews for each product category. And then we applied Information Gain and Support Vector Machine algorithms to classify the reviews and compared the classification performances in terms of precision, recall, and F-measure. Though the performances vary according to product categories and data sets, deleting terms with sparsity and neutrality showed the best performances in terms of F-measure for the two classification algorithms. However, deleting terms with sparsity only showed the best performances in terms of Recall for Information Gain and using all terms showed the best performances in terms of precision for SVM. Thus, it needs to be careful for selecting term deleting methods and classification algorithms based on data sets.